Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 078701    DOI: 10.1088/0256-307X/29/7/078701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Thermoluminescence Response of Germanium-Doped Optical Fibers to X-Ray Irradiation
M. A. Saeed1**, N. A. Fauzia1, I. Hossain2, A. T. Ramli1, B. A. Tahir1
1Department of Physics, Universiti Teknologi Malaysia, Skudai-81310, Johor, Malaysia
2Department of Physics, College of Sciences and Arts, King Abdulaziz University, Rabigh 21911, P.O. Box No. 344, KSA
Cite this article:   
M. A. Saeed, N. A. Fauzia, I. Hossain et al  2012 Chin. Phys. Lett. 29 078701
Download: PDF(594KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the characteristics of the thermoluminescence (TL) response of Ge-doped optical fibers with various energies and exposures of photon irradiation. To investigate the Ge-doped SiO2 as an efficient TL material, the TL responses are compared with commercially available standard TLD100 media. The Ge-doped optical fiber and TLD100 are placed in gelatin capsules and irradiated with x-ray using a Toshiba model KXO-15R x-ray generator. The Ge-doped fiber and TLD-100 show linear response as a function of current and time using x-ray photon of energy 60, 80 and 100 kV. When irradiated with 60, 80 and 100 kV x-ray energy at various currents (mA), tube distance (cm) and exposure time (second) ranges, TLD100 media provide a TL yield up to two times that of Ge-doped fibers. The energy response of the Ge-doped fibers is linear and similar over the 60–100 kV energy range, and its sensitivity is 0.39±0.05 of the TLD100 media. The glow curves of TLD 100 and doped optical fiber are also compared.
Received: 19 April 2012      Published: 29 July 2012
PACS:  87.50.up (Dosimetry/exposure assessment)  
  87.50.W-  
  87.50.wj (Dosimetry/exposure assessment)  
  87.50.yk (Dosimetry/exposure assessment)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/078701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/078701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. A. Saeed
N. A. Fauzia
I. Hossain
A. T. Ramli
B. A. Tahir
[1] McKinlay A F 1981 Thermoluminescence Dosimetry (Bristol: Adam Hilger Ltd) chap 6 p 136
[2] Espinosa G 2005 J. Radioanalytical Nucl. Chem. 264 107
[3] Hashim S et al 2009 Appl. Radiat. Isotopes 67 423
[4] Abdulla Y A, Amin Y M and Bradley D A 2001 Radiat. Phys. Chem. 61 409
[5] Abdul Rahman A T et al 2010 Nucl. Instrum. Methods Phys. Res. A 619 167
[6] Issa F, Latip N A A, Bradley D A and Nisbet A 2011 Nucl. Instrum. Methods Phys. Res. A 652 834
[7] Yusoff A L, Hugtenburg R P and Bradley D A 2005 Radiat. Phys. Chem. 74 459
[8] Hashim S, Bradley D A, Saripan M I, Ramli A T and Wagiran H 2010 Appl. Radiat. Isot. 68 700
[9] Ramli A T, Bradley D A, Hashim S and Wagiran H 2009 Appl. Radiat. Isot. 67 428
[10] Hashim S, Bradley D A, Peng N, Ramli A T and Wagiran H 2010 Nucl. Instrum. Methods A 619 291
[11] Espinosa G, Golzarri J I, Bogard J and Garcia-Macedo J 2006 Radiat. Prot. Dosim. 119 197
[12] Yaakob N H, Wagiran H, Hossain I, Ramli A T, Bradley D A, Hashim S and Ali H 2011 Nucl. Instrum. Methods Phys. Res. A 637 185
[13] Yaakob N H et al 2011 J. Nucl. Sci. Tech. 48 1115
[14] Tsapaki V, Kottou S and Papadimitriou D 2001 Br. J. Radiology 74 836
[15] Christie K H et al 1997 Med. Phys. 24 9
[16] Davis S D, Ross C K, Mobit P N, Van der Zwan L, Chase W J and Shortt K R 2003 Radiat. Prot. Dosim. 106 33
[17] Yap Y K, AminY M and Ng K H 2004 Australas. Phys. Eng. Sci. Med. 27 85
[18] Torabinejad M et al 1989 J. Endodontics 15 249
[19] Deda A and Telhaj E 2009 AIP Conf. Proc. 1119 209
[20] Furetta C 2008 Questions Answers Thermoluminescence (TL) Optically Stimulated Luminence (OSL (Singapore World Sci. Publishing Co. Pte. Ltd.) p 6
[21] Chiou B S, Liu J I, Hsu P C and Weng P S 1998 Radiat. Prot. Dosim. 22 115
Viewed
Full text


Abstract