CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Thermoluminescence Response of Germanium-Doped Optical Fibers to X-Ray Irradiation |
M. A. Saeed1**, N. A. Fauzia1, I. Hossain2, A. T. Ramli1, B. A. Tahir1 |
1Department of Physics, Universiti Teknologi Malaysia, Skudai-81310, Johor, Malaysia 2Department of Physics, College of Sciences and Arts, King Abdulaziz University, Rabigh 21911, P.O. Box No. 344, KSA |
|
Cite this article: |
M. A. Saeed, N. A. Fauzia, I. Hossain et al 2012 Chin. Phys. Lett. 29 078701 |
|
|
Abstract We present the characteristics of the thermoluminescence (TL) response of Ge-doped optical fibers with various energies and exposures of photon irradiation. To investigate the Ge-doped SiO2 as an efficient TL material, the TL responses are compared with commercially available standard TLD100 media. The Ge-doped optical fiber and TLD100 are placed in gelatin capsules and irradiated with x-ray using a Toshiba model KXO-15R x-ray generator. The Ge-doped fiber and TLD-100 show linear response as a function of current and time using x-ray photon of energy 60, 80 and 100 kV. When irradiated with 60, 80 and 100 kV x-ray energy at various currents (mA), tube distance (cm) and exposure time (second) ranges, TLD100 media provide a TL yield up to two times that of Ge-doped fibers. The energy response of the Ge-doped fibers is linear and similar over the 60–100 kV energy range, and its sensitivity is 0.39±0.05 of the TLD100 media. The glow curves of TLD 100 and doped optical fiber are also compared.
|
|
Received: 19 April 2012
Published: 29 July 2012
|
|
|
|
|
|
[1] McKinlay A F 1981 Thermoluminescence Dosimetry (Bristol: Adam Hilger Ltd) chap 6 p 136 [2] Espinosa G 2005 J. Radioanalytical Nucl. Chem. 264 107 [3] Hashim S et al 2009 Appl. Radiat. Isotopes 67 423 [4] Abdulla Y A, Amin Y M and Bradley D A 2001 Radiat. Phys. Chem. 61 409 [5] Abdul Rahman A T et al 2010 Nucl. Instrum. Methods Phys. Res. A 619 167 [6] Issa F, Latip N A A, Bradley D A and Nisbet A 2011 Nucl. Instrum. Methods Phys. Res. A 652 834 [7] Yusoff A L, Hugtenburg R P and Bradley D A 2005 Radiat. Phys. Chem. 74 459 [8] Hashim S, Bradley D A, Saripan M I, Ramli A T and Wagiran H 2010 Appl. Radiat. Isot. 68 700 [9] Ramli A T, Bradley D A, Hashim S and Wagiran H 2009 Appl. Radiat. Isot. 67 428 [10] Hashim S, Bradley D A, Peng N, Ramli A T and Wagiran H 2010 Nucl. Instrum. Methods A 619 291 [11] Espinosa G, Golzarri J I, Bogard J and Garcia-Macedo J 2006 Radiat. Prot. Dosim. 119 197 [12] Yaakob N H, Wagiran H, Hossain I, Ramli A T, Bradley D A, Hashim S and Ali H 2011 Nucl. Instrum. Methods Phys. Res. A 637 185 [13] Yaakob N H et al 2011 J. Nucl. Sci. Tech. 48 1115 [14] Tsapaki V, Kottou S and Papadimitriou D 2001 Br. J. Radiology 74 836 [15] Christie K H et al 1997 Med. Phys. 24 9 [16] Davis S D, Ross C K, Mobit P N, Van der Zwan L, Chase W J and Shortt K R 2003 Radiat. Prot. Dosim. 106 33 [17] Yap Y K, AminY M and Ng K H 2004 Australas. Phys. Eng. Sci. Med. 27 85 [18] Torabinejad M et al 1989 J. Endodontics 15 249 [19] Deda A and Telhaj E 2009 AIP Conf. Proc. 1119 209 [20] Furetta C 2008 Questions Answers Thermoluminescence (TL) Optically Stimulated Luminence (OSL (Singapore World Sci. Publishing Co. Pte. Ltd.) p 6 [21] Chiou B S, Liu J I, Hsu P C and Weng P S 1998 Radiat. Prot. Dosim. 22 115 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|