CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Gate-Recessed AlGaN/GaN MOSHEMTs with the Maximum Oscillation Frequency Exceeding 120 GHz on Sapphire Substrates |
KONG Xin, WEI Ke, LIU Guo-Guo, LIU Xin-Yu** |
Microwave Devices and Integrated Circuits Department, Key Laboratory of Microelectronics Device and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 |
|
Cite this article: |
KONG Xin, WEI Ke, LIU Guo-Guo et al 2012 Chin. Phys. Lett. 29 078502 |
|
|
Abstract Gate-recessed AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) on sapphire substrates are fabricated. The devices with a gate length of 160 nm and a gate periphery of 2×75 µm exhibit two orders of magnitude reduction in gate leakage current and enhanced off-state breakdown characteristics, compared with conventional HEMTs. Furthermore, the extrinsic transconductance of an MOSHEMT is 237.2 mS/mm, only 7% lower than that of Schottky-gate HEMT. An extrinsic current gain cutoff frequency fT of 65 GHz and a maximum oscillation frequency fmax of 123 GHz are deduced from rf small signal measurements. The high fmax demonstrates that gate-recessed MOSHEMTs are of great potential in millimeter wave frequencies.
|
|
Received: 23 March 2012
Published: 29 July 2012
|
|
PACS: |
85.30.-z
|
(Semiconductor devices)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.30.Tv
|
(Field effect devices)
|
|
|
|
|
[1] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 64th Device Res. Conf. p 151 [2] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzuhara M 2003 IEEE Electron Device Lett. 24 289 [3] Pei Y, Chu R, Fichtenbaum N A, Chen Z, Brown D, Shen L, Keller S, Denbaars S P and Mishra U K 2007 Jpn. J. Appl. Phys. II 46 L1087 [4] Adivarahan V, Yang J, Koudymov A, Simin G and Khan M A 2005 IEEE Electron Device Lett. 26 535 [5] Khan M A, Hu X, Sumin G, Lunev A, Yang J, Gaska R and Shur M S 2000 IEEE Electron Device Lett. 21 63 [6] Hong M, Chang Y C, Lee Y J, Chiu Y N, Lin T D, Wu S Y, Chiu H C, Kwo J and Wang Y H 2007 J. Cryst. Growth 301-302 390 [7] Wu T Y et al 2009 IEEE Trans. Electron Devices 56 2911 [8] Lin C et al 2006 64th Device Res. Conf. p 113 [9] Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M 2005 Appl. Phys. Lett. 86 063501 [10] Hao Y et al 2011 IEEE Electron Device Lett. 32 626 [11] Yue Y Z, Hao Y, Feng Q, Zhang J C, Ma X H and Ni J Y 2007 Chin. Phys. Lett. 24 2419 [12] Stoklas R, Cico K, Gregusova D, Novak J and Kordos P 2006 6th Int. Conf. Advanced Semiconductor Devices Microsystems, Conf. Proc. p 249 [13] Otomo S, Hashizume T and Hasegawa H 2002 Phys. Stat. Sol. C 1 90 [14] Guerra D, Akis R, Marino F A, Ferry D K, Goodnick S M and Saraniti M 2010 IEEE Electron Device Lett. 31 1217 [15] Jessen G H, Fitch R C Jr, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M Jr and Heller E R 2007 IEEE Trans. Electron Devices 54 2589 [16] Khan M A, Hu X, Tarakji A, Simin G, Yang J, Gaska R and Shur M S 2000 Appl. Phys. Lett. 77 1339 [17] Kordo? P, Heidelberger G, Bernát J et al 2005 Appl. Phys. Lett. 87 143501 [18] Deng J and Hwang J C M 2009 IEEE 10th Annual Wireless and Microwave Technology Conference p 1 [19] Ohno Y, Nakao T, Kishimoto S, Maezawa K and Mizutani T 2004 Appl. Phys. Lett. 84 2184 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|