Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 078502    DOI: 10.1088/0256-307X/29/7/078502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Gate-Recessed AlGaN/GaN MOSHEMTs with the Maximum Oscillation Frequency Exceeding 120 GHz on Sapphire Substrates
KONG Xin, WEI Ke, LIU Guo-Guo, LIU Xin-Yu**
Microwave Devices and Integrated Circuits Department, Key Laboratory of Microelectronics Device and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
KONG Xin, WEI Ke, LIU Guo-Guo et al  2012 Chin. Phys. Lett. 29 078502
Download: PDF(1165KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gate-recessed AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) on sapphire substrates are fabricated. The devices with a gate length of 160 nm and a gate periphery of 2×75 µm exhibit two orders of magnitude reduction in gate leakage current and enhanced off-state breakdown characteristics, compared with conventional HEMTs. Furthermore, the extrinsic transconductance of an MOSHEMT is 237.2 mS/mm, only 7% lower than that of Schottky-gate HEMT. An extrinsic current gain cutoff frequency fT of 65 GHz and a maximum oscillation frequency fmax of 123 GHz are deduced from rf small signal measurements. The high fmax demonstrates that gate-recessed MOSHEMTs are of great potential in millimeter wave frequencies.

Received: 23 March 2012      Published: 29 July 2012
PACS:  85.30.-z (Semiconductor devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/078502       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/078502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KONG Xin
WEI Ke
LIU Guo-Guo
LIU Xin-Yu
[1] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 64th Device Res. Conf. p 151
[2] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzuhara M 2003 IEEE Electron Device Lett. 24 289
[3] Pei Y, Chu R, Fichtenbaum N A, Chen Z, Brown D, Shen L, Keller S, Denbaars S P and Mishra U K 2007 Jpn. J. Appl. Phys. II 46 L1087
[4] Adivarahan V, Yang J, Koudymov A, Simin G and Khan M A 2005 IEEE Electron Device Lett. 26 535
[5] Khan M A, Hu X, Sumin G, Lunev A, Yang J, Gaska R and Shur M S 2000 IEEE Electron Device Lett. 21 63
[6] Hong M, Chang Y C, Lee Y J, Chiu Y N, Lin T D, Wu S Y, Chiu H C, Kwo J and Wang Y H 2007 J. Cryst. Growth 301-302 390
[7] Wu T Y et al 2009 IEEE Trans. Electron Devices 56 2911
[8] Lin C et al 2006 64th Device Res. Conf. p 113
[9] Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M 2005 Appl. Phys. Lett. 86 063501
[10] Hao Y et al 2011 IEEE Electron Device Lett. 32 626
[11] Yue Y Z, Hao Y, Feng Q, Zhang J C, Ma X H and Ni J Y 2007 Chin. Phys. Lett. 24 2419
[12] Stoklas R, Cico K, Gregusova D, Novak J and Kordos P 2006 6th Int. Conf. Advanced Semiconductor Devices Microsystems, Conf. Proc. p 249
[13] Otomo S, Hashizume T and Hasegawa H 2002 Phys. Stat. Sol. C 1 90
[14] Guerra D, Akis R, Marino F A, Ferry D K, Goodnick S M and Saraniti M 2010 IEEE Electron Device Lett. 31 1217
[15] Jessen G H, Fitch R C Jr, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M Jr and Heller E R 2007 IEEE Trans. Electron Devices 54 2589
[16] Khan M A, Hu X, Tarakji A, Simin G, Yang J, Gaska R and Shur M S 2000 Appl. Phys. Lett. 77 1339
[17] Kordo? P, Heidelberger G, Bernát J et al 2005 Appl. Phys. Lett. 87 143501
[18] Deng J and Hwang J C M 2009 IEEE 10th Annual Wireless and Microwave Technology Conference p 1
[19] Ohno Y, Nakao T, Kishimoto S, Maezawa K and Mizutani T 2004 Appl. Phys. Lett. 84 2184
Related articles from Frontiers Journals
[1] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 078502
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 078502
[3] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 078502
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 078502
[5] Mei Li, Jin-Shun Bi, Yan-Nan Xu, Bo Li, Kai Xi, Hai-Bin Wang, Jing-Liu, Jin-Li, Lan-Long Ji, Li Luo, Ming Liu. Total Ionizing Dose Effects of 55-nm Silicon-Oxide-Nitride-Oxide-Silicon Charge Trapping Memory in Pulse and DC Modes[J]. Chin. Phys. Lett., 2018, 35(7): 078502
[6] Yan-Fei Liu, Dong-Dong Yang, Li-Xin Wang, Qi Li. Directional Analysis of the Chaotic Superlattice around the Equilibrium Point in the Phase Space[J]. Chin. Phys. Lett., 2018, 35(4): 078502
[7] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 078502
[8] Yi-Ze Wang, Chang Liu, Jian-Hui Cai, Qiang Liu, Xin-Ke Liu, Wen-Jie Yu, Qing-Tai Zhao. Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation[J]. Chin. Phys. Lett., 2017, 34(7): 078502
[9] Xin Tan, Xing-Ye Zhou, Hong-Yu Guo, Guo-Dong Gu, Yuan-Gang Wang, Xu-Bo Song, Jia-Yun Yin, Yuan-Jie Lv, Zhi-Hong Feng. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al$_{2}$O$_{3}$ Gate Dielectric[J]. Chin. Phys. Lett., 2016, 33(09): 078502
[10] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 078502
[11] Quan-Xi Yan, Shu-Fang Zhang, Xing-Ming Long, Hai-Jun Luo, Fang Wu, Liang Fang, Da-Peng Wei, Mei-Yong Liao. Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO$_x$ Hybrid Electrode[J]. Chin. Phys. Lett., 2016, 33(07): 078502
[12] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 078502
[13] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 078502
[14] HU Sheng-Dong, JIN Jing-Jing, CHEN Yin-Hui, JIANG Yu-Yu, CHENG Kun, ZHOU Jian-Lin, LIU Jiang-Tao, HUANG Rui, YAO Sheng-Jie. A Novel Interface-Gate Structure for SOI Power MOSFET to Reduce Specific On-Resistance[J]. Chin. Phys. Lett., 2015, 32(09): 078502
[15] LIU Li-Fang, PAN Li-Yang, ZHANG Zhi-Gang, XU Jun. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory[J]. Chin. Phys. Lett., 2015, 32(08): 078502
Viewed
Full text


Abstract