Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 078501    DOI: 10.1088/0256-307X/29/7/078501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells
YU Zhi-Guo1, CHEN Peng1,2** YANG Guo-Feng1, LIU Bin1, XIE Zi-Li1, XIU Xiang-Qian1, WU Zhen-Long2, XU Feng2, XU Zhou2, HUA Xue-Mei1, HAN Ping1, SHI Yi1 ZHANG Rong1, ZHENG You-Dou1
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
2Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009
Cite this article:   
YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin et al  2012 Chin. Phys. Lett. 29 078501
Download: PDF(1389KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of dry etching damage on the internal quantum efficiency of InGaN/GaN nanorod multiple quantum wells (MQWs) is studied. The samples were etched by inductively coupled plasma (ICP) etching via a self-assembled nickel nanomask, and examined by room-temperature photoluminescence measurement. The key parameters in the etching process are rf power and ICP power. The internal quantum efficiency of nanorod MQWs shows a 5.6 times decrease substantially with the rf power increasing from 3 W to 100 W. However, it is slightly influenced by the ICP power, which shows 30% variation over a wide ICP power range between 30 W and 600 W. Under the optimized etching condition, the internal quantum efficiency of nanorod MQWs can be 40% that of the as-grown MQW sample, and the external quantum efficiency of nanorod MQWs can be about 4 times that of the as-grown one.
Received: 21 February 2012      Published: 29 July 2012
PACS:  85.60.Jb (Light-emitting devices)  
  81.07.Gf (Nanowires)  
  81.65.Cf (Surface cleaning, etching, patterning)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/078501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/078501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Zhi-Guo
CHEN Peng YANG Guo-Feng
LIU Bin
XIE Zi-Li
XIU Xiang-Qian
WU Zhen-Long
XU Feng
XU Zhou
HUA Xue-Mei
HAN Ping
SHI Yi ZHANG Rong
ZHENG You-Dou
[1] Duan X et al 2001 Nature 409 66
[2] Park W I, Yi G C, Kim M, and Pennycook S J 2003 Adv. Mater. 15 526
[3] Chiu C H et al 2007 Nanotechnology 18 445201
[4] Wierer J J et al 2009 Nature Photon. 3 163
[5] Boroditsky M et al 1999 Appl. Phys. Lett. 75 1036
[6] Dai K H et al 2011 Chin. Phys. Lett. 28 098501
[7] Liu H W et al 2011 Chin. Phys. Lett. 28 054216
[8] Kikuchi A et al 2004 Jpn. J. Appl. Phys. 43 1524
[9] Kim H M et al 2002 Appl. Phys. Lett. 81 2193
[10] Han W Q et al 1997 Science 277 1287
[11] Kuo M L, Lee Y J and Shen T C 2009 Opt. Lett. 34 2078
[12] Yang Y and Cao X A 2009 J. Vac. Sci. Technol. B 27 2337
[13] Pearton S J, Shul R J and Ren F 2000 MRS Internet J. Nitride Semicond. Res. 5 11
[14] Ryu H Y et al 2001 Appl. Phys. Lett. 78 1174
[15] Ryu H Y 2011 J. Korean Phys. Soc. 58 878
[16] Eddy C R J and Molnar B 1999 J. Electron Mater. 28 314
[17] Pearton S J et al 1995 Appl. Phys. Lett. 67 2329
[18] Chen. H S et al 2006 Nanotechnology 17 1454
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 078501
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 078501
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 078501
[4] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 078501
[5] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 078501
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 078501
[7] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 078501
[8] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 078501
[9] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 078501
[10] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 078501
[11] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 078501
[12] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 078501
[13] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 078501
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 078501
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 078501
Viewed
Full text


Abstract