CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Growth-induced Stacking Faults of ZnO Nanorods Probed by Spatial Resolved Cathodoluminescence |
XIE Yong1,2, JIE Wan-Qi1, WANG Tao1, WIEDENMANN Michael2, NEUSCHL Benjamin2, MADEL Manfred2, WANG Ya-Bin1, FENEBERG Martin2,3, THONKE Klaus2 |
1State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
2Institut für Quantenmaterie/Gruppe Halbleiterphysik, Universität Ulm, 89069 Ulm, Germany
3Institut für Experimentelle Physik, Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg, Germany |
|
Cite this article: |
XIE Yong, JIE Wan-Qi, WANG Tao et al 2012 Chin. Phys. Lett. 29 077803 |
|
|
Abstract Low density ZnO nanorods are grown by modified chemical vapor deposition on silicon substrates using gold as a catalyst. We use high resolution photoluminescence spectroscopy to gain the optical properties of these nanorods in large scale. The as-grown samples show sharp near-band-gap luminescence with a full width at half maximum of bound exciton peaks at about 300 µeV, and the ratio of ultraviolet/yellow luminescence larger than 100. Highly spatial and spectral resolved scanning electron microscope-cathodoluminescence is performed to excite the ZnO nanorods in single rods or different positions of single rods with the vapour-solid growth mechanism. The bottom of the nanorod has a 3.31-eV luminescence, which indicates that basal plane stacking faults are related to the defects that are created at the first stage of growth due to the misfit between ZnO and Si.
|
|
Received: 06 April 2012
Published: 29 July 2012
|
|
PACS: |
78.60.-b
|
(Other luminescence and radiative recombination)
|
|
78.55.Et
|
(II-VI semiconductors)
|
|
78.60.Hk
|
(Cathodoluminescence, ionoluminescence)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
|
|
|
[1] Holt D B and Yacobi B G 2007 Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structure (Cambridge: Cambridge University) [2] Yankovich A B, Puchala B, Wang F, Seo J H, Morgan D, Wang X, Ma Z, Kvit A V and Voyles P M 2012 Nano Lett. 12 1311 [3] Weissenberger D, Duerrschnabel M, Gerthsen D, Perez-Willard F, Reiser A, Prinz G M, Feneberg M, Thonke K and Sauer R 2007 Appl. Phys. Lett. 91 132110 [4] Ding Y, Gao P X and Wang Z L 2004 J. Am. Chem. Soc. 126 2066 [5] Dadgar A, Krtschil A, Bertram F, Giemsch S, Hempel T, Veit P, Diez A, Oleynik N, Clos R, Christen J and Krost A 2005 Superlattice. Microstruct. 38 245 [6] Cavallini A, Polenta L, Rossi M, Richter T, Marso M, Meijers R, Calarco R and Lüth H 2006 Nano Lett. 6 1548 [7] Kelzenberg M D, Turner-Evans D B, Kayes B M, Filler M A, Putnam M C, Lewis N S and Atwater H A 2008 Nano Lett. 8 710 [8] Park W, Jo G, Hong W K, Yoon J, Choe M, Lee S, Ji Y, Kim G, Kahng Y H, Lee K, Wang D L and Lee T 2011 Nanotechnology 22 205204 [9] Oh Y M, Lee K M, Park K H, Kim Y, Ahn Y H, Park J Y and Lee S 2007 Nano Lett. 7 3681 [10] Schirra M, Reiser A, Prinz G M, Ladenburger A, Thonke K and Sauer R 2007 J. Appl. Phys. 101 113509 [11] Schirra M, Feneberg M, Prinz G M, Reiser A, Roder T, Thonke K and Sauer R 2009 Phys. Rev. Lett. 102 073903 [12] Ye J D, Zhao H, Liu W, Gu S L, Zhang R, Zheng Y D, Tan S T, Sun X W, Lo G Q and Teo K L 2008 Appl. Phys. Lett. 92 131914 [13] Gao M, Cheng R, Li W, Li Y, Zhang X and Xie S 2010 J. Phys. Chem. C 114 11081 [14] Gargas D J, Toimil-Molares M E and Yang P D 2009 J. Am. Chem. Soc. 131 2125 [15] Klingshirn C F, Meyer B K, AndreasWaag, Hoffmann A and Geurts J 2010 Zinc Oxide: From Fundamental Properties Towards Novel Applications (Berlin: Springer) [16] Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Z J, Grundmann M, Bakin A, Behrends A, Mofor A C, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, Guinard J and Dang D L S 2009 Nanotechnology 20 [17] Wang Z L 2009 Mater. Sci. Eng.: R: Reports 64 33 [18] Morko? H and ?zgür ü 2007 Zinc Oxide: Fundamentals, Materials and Device Technology (Weinheim: Wiley-VCH) [19] Li Y J, Feneberg M, Reiser A, Schirra M, Enchelmaier R, Ladenburger A, Langlois A, Sauer R, Thonke K, Cai J and Rauscher H 2006 J. Appl. Phys. 99 054307 [20] McCluskey M D and Jokela S J 2009 J. Appl. Phys. 106 071101 [21] Travnikov V V, Freiberg A and Savikhin S F 1990 J. Lumin. 47 107 [22] Meyer B K, Alves H, Hofmann D M, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Strassburg M, Dworzak M, Haboeck U and Rodina A V 2004 Phys. Status Solidi B 241 231 [23] Xie Y, Madel M, Zoberbier T, Reiser A, Jie W, Neuschl B, Biskupek J, Kaiser U, Feneberg M and Thonke K 2012 Appl. Phys. Lett. 100 182101 [24] Drouin D, Couture A R, Joly D, Tastet X, Aimez V and Gauvin R 2007 Scanning 29 92 [25] Schirra M, Schneider R, Reiser A, Prinz G M, Feneberg M, Biskupek J, Kaiser U, Krill C E, Thonke K and Sauer R 2008 Phys. Rev. B 77 125215 [26] Fan H J, Scholz R, Zacharias M, Gosele U, Bertram F, Forster D and Christen J 2005 Appl. Phys. Lett. 86 023113 [27] Allen J E, Hemesath E R, Perea D E, Lensch-Falk J L, Li Z Y, Yin F, Gass M H, Wang P, Bleloch A L, Palmer R E and Lauhon L J 2008 Nature Nanotech. 3 168 [28] Yan Y, Dalpian G M, Al-Jassim M M and Wei S H 2004 Phys. Rev. B 70 193206 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|