Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077803    DOI: 10.1088/0256-307X/29/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Growth-induced Stacking Faults of ZnO Nanorods Probed by Spatial Resolved Cathodoluminescence
XIE Yong1,2, JIE Wan-Qi1, WANG Tao1, WIEDENMANN Michael2, NEUSCHL Benjamin2, MADEL Manfred2, WANG Ya-Bin1, FENEBERG Martin2,3, THONKE Klaus2
1State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
2Institut für Quantenmaterie/Gruppe Halbleiterphysik, Universität Ulm, 89069 Ulm, Germany
3Institut für Experimentelle Physik, Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg, Germany
Cite this article:   
XIE Yong, JIE Wan-Qi, WANG Tao et al  2012 Chin. Phys. Lett. 29 077803
Download: PDF(2995KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Low density ZnO nanorods are grown by modified chemical vapor deposition on silicon substrates using gold as a catalyst. We use high resolution photoluminescence spectroscopy to gain the optical properties of these nanorods in large scale. The as-grown samples show sharp near-band-gap luminescence with a full width at half maximum of bound exciton peaks at about 300 µeV, and the ratio of ultraviolet/yellow luminescence larger than 100. Highly spatial and spectral resolved scanning electron microscope-cathodoluminescence is performed to excite the ZnO nanorods in single rods or different positions of single rods with the vapour-solid growth mechanism. The bottom of the nanorod has a 3.31-eV luminescence, which indicates that basal plane stacking faults are related to the defects that are created at the first stage of growth due to the misfit between ZnO and Si.

Received: 06 April 2012      Published: 29 July 2012
PACS:  78.60.-b (Other luminescence and radiative recombination)  
  78.55.Et (II-VI semiconductors)  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077803       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Yong
JIE Wan-Qi
WANG Tao
WIEDENMANN Michael
NEUSCHL Benjamin
MADEL Manfred
WANG Ya-Bin
FENEBERG Martin
THONKE Klaus
[1] Holt D B and Yacobi B G 2007 Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structure (Cambridge: Cambridge University)
[2] Yankovich A B, Puchala B, Wang F, Seo J H, Morgan D, Wang X, Ma Z, Kvit A V and Voyles P M 2012 Nano Lett. 12 1311
[3] Weissenberger D, Duerrschnabel M, Gerthsen D, Perez-Willard F, Reiser A, Prinz G M, Feneberg M, Thonke K and Sauer R 2007 Appl. Phys. Lett. 91 132110
[4] Ding Y, Gao P X and Wang Z L 2004 J. Am. Chem. Soc. 126 2066
[5] Dadgar A, Krtschil A, Bertram F, Giemsch S, Hempel T, Veit P, Diez A, Oleynik N, Clos R, Christen J and Krost A 2005 Superlattice. Microstruct. 38 245
[6] Cavallini A, Polenta L, Rossi M, Richter T, Marso M, Meijers R, Calarco R and Lüth H 2006 Nano Lett. 6 1548
[7] Kelzenberg M D, Turner-Evans D B, Kayes B M, Filler M A, Putnam M C, Lewis N S and Atwater H A 2008 Nano Lett. 8 710
[8] Park W, Jo G, Hong W K, Yoon J, Choe M, Lee S, Ji Y, Kim G, Kahng Y H, Lee K, Wang D L and Lee T 2011 Nanotechnology 22 205204
[9] Oh Y M, Lee K M, Park K H, Kim Y, Ahn Y H, Park J Y and Lee S 2007 Nano Lett. 7 3681
[10] Schirra M, Reiser A, Prinz G M, Ladenburger A, Thonke K and Sauer R 2007 J. Appl. Phys. 101 113509
[11] Schirra M, Feneberg M, Prinz G M, Reiser A, Roder T, Thonke K and Sauer R 2009 Phys. Rev. Lett. 102 073903
[12] Ye J D, Zhao H, Liu W, Gu S L, Zhang R, Zheng Y D, Tan S T, Sun X W, Lo G Q and Teo K L 2008 Appl. Phys. Lett. 92 131914
[13] Gao M, Cheng R, Li W, Li Y, Zhang X and Xie S 2010 J. Phys. Chem. C 114 11081
[14] Gargas D J, Toimil-Molares M E and Yang P D 2009 J. Am. Chem. Soc. 131 2125
[15] Klingshirn C F, Meyer B K, AndreasWaag, Hoffmann A and Geurts J 2010 Zinc Oxide: From Fundamental Properties Towards Novel Applications (Berlin: Springer)
[16] Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Z J, Grundmann M, Bakin A, Behrends A, Mofor A C, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, Guinard J and Dang D L S 2009 Nanotechnology 20
[17] Wang Z L 2009 Mater. Sci. Eng.: R: Reports 64 33
[18] Morko? H and ?zgür ü 2007 Zinc Oxide: Fundamentals, Materials and Device Technology (Weinheim: Wiley-VCH)
[19] Li Y J, Feneberg M, Reiser A, Schirra M, Enchelmaier R, Ladenburger A, Langlois A, Sauer R, Thonke K, Cai J and Rauscher H 2006 J. Appl. Phys. 99 054307
[20] McCluskey M D and Jokela S J 2009 J. Appl. Phys. 106 071101
[21] Travnikov V V, Freiberg A and Savikhin S F 1990 J. Lumin. 47 107
[22] Meyer B K, Alves H, Hofmann D M, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Strassburg M, Dworzak M, Haboeck U and Rodina A V 2004 Phys. Status Solidi B 241 231
[23] Xie Y, Madel M, Zoberbier T, Reiser A, Jie W, Neuschl B, Biskupek J, Kaiser U, Feneberg M and Thonke K 2012 Appl. Phys. Lett. 100 182101
[24] Drouin D, Couture A R, Joly D, Tastet X, Aimez V and Gauvin R 2007 Scanning 29 92
[25] Schirra M, Schneider R, Reiser A, Prinz G M, Feneberg M, Biskupek J, Kaiser U, Krill C E, Thonke K and Sauer R 2008 Phys. Rev. B 77 125215
[26] Fan H J, Scholz R, Zacharias M, Gosele U, Bertram F, Forster D and Christen J 2005 Appl. Phys. Lett. 86 023113
[27] Allen J E, Hemesath E R, Perea D E, Lensch-Falk J L, Li Z Y, Yin F, Gass M H, Wang P, Bleloch A L, Palmer R E and Lauhon L J 2008 Nature Nanotech. 3 168
[28] Yan Y, Dalpian G M, Al-Jassim M M and Wei S H 2004 Phys. Rev. B 70 193206
Related articles from Frontiers Journals
[1] ZHAO Lu-Bing, WU Jie-Jun, XU Ke, BAO Kui, YANG Zhi-Jian, PAN Yao-Bo, HU Xiao-Dong, ZHANG Guo-Yi. Optical Defect in GaN-Based Laser Diodes Detected by Cathodoluminescence[J]. Chin. Phys. Lett., 2008, 25(12): 077803
[2] WU Lin-Zhang, TIAN Wei, GAO Feng. Determination of Quasi Fermi-Level Separation of Semiconductor Lasers from Amplified Spontaneous Emission[J]. Chin. Phys. Lett., 2004, 21(7): 077803
Viewed
Full text


Abstract