Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077802    DOI: 10.1088/0256-307X/29/7/077802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Abnormal Temperature Dependence of Coercivity in Cobalt Nanowires
FAN Xiu-Xiu1, HU Hai-Ning2, ZHOU Shi-Ming1,3, YANG Mao4, DU Jun4, SHI Zhong1,3**
1Surface Physics State Laboratory and Department of Physics, Fudan University, Shanghai 200433
2School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090
3Department of Physics, Tongji University, Shanghai 200092
4Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
FAN Xiu-Xiu, HU Hai-Ning, ZHOU Shi-Ming et al  2012 Chin. Phys. Lett. 29 077802
Download: PDF(928KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Co nanowire arrays have been fabricated into anodic aluminum oxide templates at 20°C by dc electrodeposition. It is shown that Co nanowires fabricated at lower and higher growth voltages have a hexagonal close packing (hcp) structure with preferred [100] orientation along the nanowire axis and a face-centered cubic (fcc) structure with preferred [220] orientation, respectively. With increasing growth voltage, the room-temperature coercivity along the nanowire axis is enhanced gradually. For fcc Co nanowires, the coercivity increases monotonically with increasing temperature while for hcp Co nanowires, a minimal coercivity is obtained along both parallel-to-axis and perpendicular-to-axis orientations with the temperature rising from 50 K to 390 K. The abnormal temperature dependence of the coercivity can be attributed to the competition between the shape anisotropy and magnetocrystalline anisotropy as a function of temperature.
Received: 01 April 2012      Published: 29 July 2012
PACS:  78.67.Uh (Nanowires)  
  75.30.Gw (Magnetic anisotropy)  
  75.60.Jk (Magnetization reversal mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077802       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Xiu-Xiu
HU Hai-Ning
ZHOU Shi-Ming
YANG Mao
DU Jun
SHI Zhong
[1] Pan H, Liu B H, Yi J B, Poh C, Lim S, Ding J, Feng Y P, Huan C H A and Lin J Y 2005 J. Phys. Chem. B 109 3094
[2] Goolaup S, Adeyeye A O, Singh N and Gubbiotti G 2007 Phys. Rev. B 75 144430
[3] Zeng H, Skomski R, Menon L, Liu Y, Bandyopadhyay S and Sellmyer D J 2002 Phys. Rev. B 65 134426
[4] Wang J B, Liu Q F, Xue D S and Li F S 2004 Chin. Phys. Lett. 21 945
[5] Pang Y T, Meng G W, Shan W J, Fang Q and Zhang L D 2003 Chin. Phys. Lett. 20 144
[6] Wu W, Cui B, Sun X, Zhang W, Zhuang L, Kong L and Chou S Y 1998 J. Vac. Sci. Technol. B 16 3825
[7] Skomski R, Zeng H, Zheng M and Sellmyer D J 2000 Phys. Rev. B 62 3900
[8] Li F S, Wang T, Ren L Y and Sun J R 2004 J. Phys.: Condens. Mater. 16 8053
[9] Ren Y, Liu Q F, Li S L, Wang J B and Han X H 2009 J. Magn. Magn. Mater. 321 226
[10] Sard R, Schwartz C D and Weil R 1966 J. Electrochem. Soc. 113 424
[11] Han X H, Liu Q F, Wang J B, Li S L, Ren Y, Liu R L and Li F S 2009 J. Phys. D: Appl. Phys. 42 095005
[12] Hu H N, Chen H Y, Yu S Y, Chen J L, Wu G H, Meng F B, Qu J P, Li Y, Zhu H and Xiao J Q 2005 J. Magn. Magn. Mater. 295 257
[13] Cui C X, Wang B L, Yang W and Sun J B 2011 J. Cryst. Growth 324 168
[14] S ánchez-Barriga J, Lucas M, Radu F, Martin E, Multigner M, Marin P, Hernando A and Rivero G 2009 Phys. Rev. B 80 184424
[15] Ye Z X, Liu H D, Luo Z P, Lee H G, Wu W H, Naugle D G and Lyuksyutov I 2009 Nanotechnology 20 045704
[16] Sellmyer D J, Zheng M and Skomski R 2001 J. Phys.: Condens. Matter 13 R433
[17] Jin C G, Liu W F, Jia C, Xiang X Q, Cai W L, Yao L Z and Li X G 2003 J. Cryst. Growth 258 337
[18] Ferré R, Ouanadjela K, George J M, Piraux L and Dubois S 1997 Phys. Rev. B 56 14066
[19] Ahmad N, Chen J Y, Iqba J, Wang W X, Zhou W P and Han X F 2011 J. Appl. Phys. 109 07A331
[20] Paulus P M, Luis F, Kr?ll M, Schmid G and de Jongh L J 2001 J. Magn. Magn. Mater. 224 180
[21] Schio P, Vidal F, Zheng Y, Milano J, Fonda E, Demaille D, Vodungbo B, Varalda J, de Oliveira A J A and Etgens V H 2010 Phys. Rev. B 82 094436
[22] Masuda K and Fukuda P 1995 Science 268 1466
[23] Nakahara S and Mahajan S 1980 J. Electrochem. Soc. 127 283
[24] Wang X W, Fei G T, Tong P, Xu X J and Zhang L D 2007 J. Cryst. Growth 300 421
[25] Switzer J A, Kothari H M and Bohannan E W 2002 J. Phys. Chem. B 106 4027
[26] Budevski E, Staikov G and Lorenz W J 1996 Electrochemical Phase Formation and Growth: An Introduction to the Initial Stage of Metal Deposition (New York: VCH) p 267
[27] Vazquez M and Vivas L G 2011 Phys. Status Solidi B 248 2368
[28] Piraux L, Dubois S, Ferain E, Legras R, Ounadjela K, George J M, Maurice J L and Fert A 1997 J. Magn. Magn. Mater. 165 352
[29] Schl?rb H, Haehnel V, Khatri M S, Srivastav A, Kumar A, Schultz L and F ?hler S 2010 Phys. Status Solidi B 247 2364
[30] Ahmad N, Chen J Y, Zhou W P, Liu D P and Han X F 2011 J Supercond. Nov. Magn. 24 785
Related articles from Frontiers Journals
[1] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 077802
[2] Lu-Hua Guo, Ying-Wei Wang, Yong-Qiang Jiang, Si Xiao, Jun He. Dependence of Nonlinear Optical Response of Anatase TiO$_{2}$ on Shape and Excitation Intensity[J]. Chin. Phys. Lett., 2017, 34(7): 077802
[3] Yi Shen, Ruo-He Yao. Improvement of the Conductivity of Silver Nanowire Film by Adding Silver Nano-Particles[J]. Chin. Phys. Lett., 2016, 33(03): 077802
[4] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 077802
[5] YANG You-Wen, LI Tian-Ying, ZHU Wen-Bin, MA Dong-Ming, CHEN Dong. Fabrication and Characterization of Single-Crystalline AgSbTe Nanowire Arrays[J]. Chin. Phys. Lett., 2013, 30(10): 077802
[6] ZHU Yin, WEI Hong, YANG Peng-Fei, XU Hong-Xing. Controllable Excitation of Surface Plasmons in End-to-Trunk Coupled Silver Nanowire Structures[J]. Chin. Phys. Lett., 2012, 29(7): 077802
[7] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 077802
[8] TANG Hai-Ping, HE Hai-Ping**, LIU Chao, KWON Bong-Jun, YE Zhi-Zhen, LEE Soonil, PARK Ji-Yong*** . Photoluminescence of Nominally Undoped Heavy n-Type ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(2): 077802
[9] Lu Zhong, Wei Xu, Mei-Yi Yao, Wen-Feng Shen, Feng Xu, Wei-Jie Song. Fabrication of High-Haze Flexible Transparent Conductive PMMA Films Embedded with Silver Nanowires[J]. Chin. Phys. Lett., 2017, 34(11): 077802
Viewed
Full text


Abstract