CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
First Principle Study of the Electronic Properties of 3C-SiC Doped with Different Amounts of Ni |
DOU Yan-Kun1,2, QI Xin1,2, JIN Hai-Bo1,2**, CAO Mao-Sheng1, Usman Zahid1, HOU Zhi-Ling3 |
1School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 2State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 3 School of Science, Beijing University of Chemical Technology, Beijing 100029 |
|
Cite this article: |
DOU Yan-Kun, QI Xin, JIN Hai-Bo et al 2012 Chin. Phys. Lett. 29 077701 |
|
|
Abstract The electronic properties of 3C-SiC doped with different contents of Ni are investigated by using first-principles calculations. It is observed that the non-filled impurity energy levels in the band-gap region increase with increasing Ni content, which subsequently results in an enhancement of electrical conductivity of 3C-SiC. This enhancement in conductivity is verified by the conductivity spectrum in which new peaks appear in the middle-infrared region, visible region, and middle-ultraviolet region. It is further observed that the width and intensity of these newly appeared peaks increase with the increase of Ni content. The electronic density of states exhibits the peaks crossing the Fermi level, which favors the electronic transitions and proves Ni-doped 3C-SiC to be a half-metallic semiconductor. Through the analysis of electron density difference and Mulliken overlap population, it is found that the covalent bonds are formed between Ni and near-by C atoms. These features confirm that the Ni-doped 3C-SiC semiconductor is a promising material for device applications in modern day electronics.
|
|
Received: 15 March 2012
Published: 29 July 2012
|
|
PACS: |
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
|
|
|
[1] Medvedeva N I, Yuryeva é I and IvanovskiI A L 2002 Semiconductors 36 751 [2] Krstic V D 1992 J. Am. Ceram. Soc. 75 170 [3] Fissel A, Schroter B and Richter W 1995 Appl. Phys. Lett. 66 3182 [4] Martin H P, Ecke R and Muller E 1998 J. Eur. Ceram. Soc. 18 1737 [5] Zhou Y, Kang Y Q, Fang X Y, Yuan J, Shi X L, Song WL and Cao M S 2008 Chin. Phys. Lett. 25 1902 [6] Jepps N W, Page T F 1983 Prog. Cryst. Growth Charact. Mater. 7 259 [7] Su J F, Yao R, Zhong Z and Fu Z X 2008 Chin. Phys. Lett. 25 3346 [8] Zhao D L, Zhao H S and Zhou W C 2001 Physica E 9 679 [9] Zhang B, Li J B, Sun J J, Zhang S X, Zhai H Z and Du Z W 2002 J. Eur. Ceram. Soc. 22 93 [10] Huan J, Zhou W C and Fa L 2002 J. Mater. Chem. 12 2459 [11] Ding J L, Wang Y C, Zhou H, Chen Q, Qian S X, Feng Z C and Lu W J 2010 Chin. Phys. Lett. 27 124202 [12] Jin H B, Cao M S, Zhou W and Agathopoulos S 2010 Mater. Res. Bull. 45 247 [13] Li Z M, Zhou W C, Lei T M, Luo F, Huang Y X and Cao Q X 2009 J. Alloys Compd. 475 506 [14] Li Z M, Zhou W C, Su X L, Huang Y X, Li G F and Wang Y P 2009 J. Am. Ceram. Soc. 92 2116 [15] Son N T, Henry A, Isoya J, Katagiri M and Umeda T 2006 Phys. Rev. B 73 075201 [16] Noffsinger J, Giustino F, Louie S G and Cohen M L 2009 Phys. Rev. B 79 104511 [17] Theodoropoulou N, Hebart A F, Chu S N G, Overberg M E, Abernathy C R, Pearton S J Wilson R G, Zavada J M and Electrochem 2001 Electrochem. Solid-State Lett. 4 G119 [18] Bouziane K, Mamor M and Elzain M 2008 Phys. Rev. B 78 195305 [19] Kim Y S, Chung Y C and Yi S C 2006 Mater. Sci. Eng. B 126 194 [20] Theodoropoulou N Hebard A F Chu S N G and Overberg M E 2002 J. Vac. Sci. Technol. A 20 579 [21] Seong H K, Park T E, Lee S C, Lee K R, Park J K and Choi H J 2009 Mater. Int. 15 107 [22] Gubanov V A and Boekema C 2001 Appl. Phys. Lett. 78 216 [23] Yurieva é I 2004 J. Struct. Chem. 45 194 [24] Barbosa K O, Machado W V M and AssaliL V C 2001 Physica B 308 726 [25] Zhang W H, Zhang F C, Zhang Z Y, Lu S Y and Yang Y N 2010 Phys. Mech. Astron. 53 1582 [26] Li D, Jin H B, Cao M S, Chen T, Dou Y K and Wen B 2011 J. Am. Ceram. 94 1523 [27] Dou Y K, Jin H B, Cao M S, Fang X Y, Hou Z L and Agathopoulos S 2011 J. Alloys Compd. 509 6117 [28] Segall M D Lindan P, Probet M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Condens. Matter 14 2717 [29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [31] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [32] Anisimov V I, Solovyev I V, Korotin M A and Czyzkyev M T 1993 Phys. Rev. B 48 16929 [33] Fische T H and Almlof J 1992 J. Phys. Chem. 96 9768 [34] Humphreys R G, Bimberg D and Choyke W J 1981 Sold State Commun. 39 163 [35] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 [36] Katayama-Yoshida H and Sato K 2003 Physica B 327 337 [37] Medeiros S K Albuquerque E L, Maia Jr F F Caetano E W S and Freire V N 2007 Chem. Phys. Lett. 435 59 [38] Segall M D, Shah R Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|