Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077308    DOI: 10.1088/0256-307X/29/7/077308
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Polarization-Selective Collimation Effect with a Reflective Plasmonic Cavity
MAO Fei-Long, XIE Jin-Jin, FAN Qing-Yan, ZHANG Li-Jian, AN Zheng-Hua**
Institute of Advanced Materials, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433
Cite this article:   
MAO Fei-Long, XIE Jin-Jin, FAN Qing-Yan et al  2012 Chin. Phys. Lett. 29 077308
Download: PDF(789KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report that a metal-dielectric-metal cavity with a perforated top metallic film shows a remarkable polarization-selective collimation effect through reflection on the perforated film. According to simulations, such plasmonic cavities can achieve nearly perfect absorption (R<1.5%) of a transverse magnetic (TM) wave at an optimized incident angle while nearly perfect reflection (R∼100%) at normal incidence. A very wide incident angle range (approximately 15°–65°) is found to exhibit a high absorption ratio exceeding over 70%. In contrast, for a transverse electric (TE) wave, the plasmonic cavities remain highly reflective (R∼100%) regardless of the incident angles. We elucidate that this polarization- and angle-dependent behavior arises from an even-order (N=2) horizontal Fabry–Pérot (FP) resonant mode inside the plasmonic cavity. This effect may find potential applications for angle filtering of polarized divergent light beams in optics.

Received: 27 April 2012      Published: 29 July 2012
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  42.79.Dj (Gratings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077308       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077308
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MAO Fei-Long
XIE Jin-Jin
FAN Qing-Yan
ZHANG Li-Jian
AN Zheng-Hua
[1] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 143904
[2] Miyazaki H T and Kurokawa Y 2006 Phys. Rev. Lett. 96 097401
[3] Unlu M S and Strite S 1995 J. Appl. Phys. 78 607
[4] Yodorov Y et al 2010 Opt. Express 18 13886
[5] Yodorov Y et al 2009 Phys. Rev. Lett. 102 186402
[6] Jouy P et al 2011 Appl. Phys. Lett. 98 231114
[7] Yodorov Y et al 2010 Phys. Rev. Lett. 105 196402
[8] Li M Z, An Z H, Zhou L, Mao, F L and Wang H L 2011 Chin. Phys. Lett. 28 075206
[9] Hu X H, Li M, Ye Z, Leung W Y, Ho K M and Lin S Y 2008 Appl. Phys. Lett. 93 241108
[10] Kang G G, Vartiainen I, Bai B F, Paakkonen P and Turunen J 2011 Opt. Lett. 36 1011
[11] Ye Y H et al 2008 Appl. Phys. Lett. 93 033113
[12] Jiang Y W, Tzuang L D, Ye Y H, Wu Y T, Tsai M W, Chen C Y and Lee S C 2009 Opt. Express 17 2631
[13] CONCERTO 7.0 2008 Vector Fields Limited (England)
[14] Degiron A, Lezec H J, Yamamoto N and Ebbesen T W 2004 Opt. Commun. 239 61
[15] Chen C Y, Tsai M W, Chuang T H, Chang Y T and Lee S C 2007 Appl. Phys. Lett. 91 63108
[16] Wang H L et al 2011 Plasmonics 6 319
[17] Mary A, Rodrigo S G, Martín-Moreno L and García-Vidal F J 2007 Phys. Rev. B 76 195414
[18] Mao F L, An Z H, Xiao S Y, Komiyama S, Lu W and Zhou L 2012 Small (submitted)
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 077308
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 077308
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 077308
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 077308
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 077308
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 077308
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 077308
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 077308
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 077308
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 077308
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 077308
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 077308
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 077308
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 077308
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 077308
Viewed
Full text


Abstract