CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Polarization-Selective Collimation Effect with a Reflective Plasmonic Cavity |
MAO Fei-Long, XIE Jin-Jin, FAN Qing-Yan, ZHANG Li-Jian, AN Zheng-Hua** |
Institute of Advanced Materials, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433 |
|
Cite this article: |
MAO Fei-Long, XIE Jin-Jin, FAN Qing-Yan et al 2012 Chin. Phys. Lett. 29 077308 |
|
|
Abstract We report that a metal-dielectric-metal cavity with a perforated top metallic film shows a remarkable polarization-selective collimation effect through reflection on the perforated film. According to simulations, such plasmonic cavities can achieve nearly perfect absorption (R<1.5%) of a transverse magnetic (TM) wave at an optimized incident angle while nearly perfect reflection (R∼100%) at normal incidence. A very wide incident angle range (approximately 15°–65°) is found to exhibit a high absorption ratio exceeding over 70%. In contrast, for a transverse electric (TE) wave, the plasmonic cavities remain highly reflective (R∼100%) regardless of the incident angles. We elucidate that this polarization- and angle-dependent behavior arises from an even-order (N=2) horizontal Fabry–Pérot (FP) resonant mode inside the plasmonic cavity. This effect may find potential applications for angle filtering of polarized divergent light beams in optics.
|
|
Received: 27 April 2012
Published: 29 July 2012
|
|
PACS: |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
42.79.Dj
|
(Gratings)
|
|
|
|
|
[1] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 143904 [2] Miyazaki H T and Kurokawa Y 2006 Phys. Rev. Lett. 96 097401 [3] Unlu M S and Strite S 1995 J. Appl. Phys. 78 607 [4] Yodorov Y et al 2010 Opt. Express 18 13886 [5] Yodorov Y et al 2009 Phys. Rev. Lett. 102 186402 [6] Jouy P et al 2011 Appl. Phys. Lett. 98 231114 [7] Yodorov Y et al 2010 Phys. Rev. Lett. 105 196402 [8] Li M Z, An Z H, Zhou L, Mao, F L and Wang H L 2011 Chin. Phys. Lett. 28 075206 [9] Hu X H, Li M, Ye Z, Leung W Y, Ho K M and Lin S Y 2008 Appl. Phys. Lett. 93 241108 [10] Kang G G, Vartiainen I, Bai B F, Paakkonen P and Turunen J 2011 Opt. Lett. 36 1011 [11] Ye Y H et al 2008 Appl. Phys. Lett. 93 033113 [12] Jiang Y W, Tzuang L D, Ye Y H, Wu Y T, Tsai M W, Chen C Y and Lee S C 2009 Opt. Express 17 2631 [13] CONCERTO 7.0 2008 Vector Fields Limited (England) [14] Degiron A, Lezec H J, Yamamoto N and Ebbesen T W 2004 Opt. Commun. 239 61 [15] Chen C Y, Tsai M W, Chuang T H, Chang Y T and Lee S C 2007 Appl. Phys. Lett. 91 63108 [16] Wang H L et al 2011 Plasmonics 6 319 [17] Mary A, Rodrigo S G, Martín-Moreno L and García-Vidal F J 2007 Phys. Rev. B 76 195414 [18] Mao F L, An Z H, Xiao S Y, Komiyama S, Lu W and Zhou L 2012 Small (submitted) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|