Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077307    DOI: 10.1088/0256-307X/29/7/077307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electron Transport through Magnetic Superlattices with Asymmetric Double-Barrier Units in Graphene
HUO Qiu-Hong, WANG Ru-Zhi**, YAN Hui**
Laboratory of Thin Film Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Cite this article:   
HUO Qiu-Hong, WANG Ru-Zhi, YAN Hui 2012 Chin. Phys. Lett. 29 077307
Download: PDF(811KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the transport properties through magnetic superlattices with asymmetric double-barrier units in monolayer graphene. In N-periodic asymmetric double-barrier units, there is (N−1)-fold resonant peak splitting for transmission, but the splitting is (2N−1)-fold in N-periodic symmetric units. The transmission depends not only on the value of incident wavevectors but also on the value and the direction of transverse wavevectors. This renders the structure's efficient wavevector filters. In addition, the conductance of standard electrons with a parabolic energy spectrum is suppressed more strongly than that of Dirac electrons, whereas the resonances are more pronounced for Dirac electrons than for standard ones.

Received: 24 April 2012      Published: 29 July 2012
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.75.+a  
  81.05.Uw  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077307       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUO Qiu-Hong
WANG Ru-Zhi
YAN Hui
[1] Novoselov K S et al 2004 Science 306 666
2005 Nature 438 197
[2] Zhang Y et al 2005 Nature 438 201
[3] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[4] Klein O 1929 Z. Phys. 53 157
[5] Katsnelson M I et al 2006 Nature Phys. 2 620
[6] Pereira J M et al 2006 Phys. Rev. B 74 045424
[7] Pereira J M et al 2007 Appl. Phys. Lett. 90 132122
[8] Martino A De et al 2007 Phys. Rev. Lett. 98 066802
[9] Lee S J et al 2004 Phys. Rep. 394 1
[10] Huard B et al 2007 Phys. Rev. Lett. 98 236803
[11] Williams J R et al 2007 Science 317 638
[12] Tahir M and Sabeeh K 2008 Phys. Rev. B 77 195421
[13] Wu Q S et al 2008 J. Phys.: Condens. Matter 20 485210
[14] Masir M R et al 2008 Phys. Rev. B 77 235443
[15] Zhai F and Chang K 2008 Phys. Rev. B 77 113409
[16] Masir M R et al 2009 Appl. Phys. Lett. 93 242103
[17] Masir M R et al 2009 New J. Phys. 11 095009
[18] Dell'Anna L and De Martino A 2009 Phys. Rev. B 79 045420
[19] Soodchomshom B et al 2009 Physica E 41 1310
[20] Myoung N and Ihm G 2009 Physica E 42 70
[21] Masir M R et al 2009 Phys. Rev. B 79 035409
[22] Ghosh S and Sharma M 2009 J. Phys.: Condens. Matter 21 292204
[23] Kuru S et al 2009 J. Phys.: Condens. Matter 21 455305
[24] Nasir R et al 2010 Phys. Rev. B 81 085402
[25] Sun L F, Fang C, Song Y and Guo Y 2010 J. Phys.: Condens. Matter 22 445303
[26] Li Y X 2010 J. Phys.: Condens. Matter 22 015302
[27] Biswas R, Biswas A, Hui N and Sinha C 2010 J. Appl. Phys. 108 043708
[28] Bliokh Y P, Freilikher V and Nori F 2010 Phys. Rev. B 81 075410
[29] Zhang H, Chan K S and Lin Z J 2011 Nanotechnology 22 505705
[30] Urban D F, Bercioux D, Wimmer M and Hausler W 2011 Phys. Rev. B 84 115136
[31] Dell'Anna L and De Martino A 2011 Phys. Rev. B 83 155449
[32] Sharma M and Ghosh S 2011 J. Phys.: Condens. Matter 23 055501
[33] Myoung N and Ihm G 2011 J. Appl. Phys. 109 053716
[34] Wang R Z and Yan X H 2000 Chin. Phys. Lett. 17 598
MacKinnon A 1985 Z. Phys. B: Condens. Matter 59 385
[35] Yuan R Y, Wang R Z, Xue K, Wei J S, Song X M, Wang B and Yan H 2006 Phys. Rev. B 74 024417
[36] Yang X D, Wang R Z, Guo Y, Yang W, Yu D B, Wang B and Yan H 2004 Phys. Rev. B 70 115303
[37] Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518
[38] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 077307
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 077307
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 077307
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 077307
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 077307
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 077307
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 077307
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 077307
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 077307
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 077307
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 077307
[12] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 077307
[13] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 077307
[14] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 077307
[15] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 077307
Viewed
Full text


Abstract