CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electron Transport through Magnetic Superlattices with Asymmetric Double-Barrier Units in Graphene |
HUO Qiu-Hong, WANG Ru-Zhi**, YAN Hui** |
Laboratory of Thin Film Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 |
|
Cite this article: |
HUO Qiu-Hong, WANG Ru-Zhi, YAN Hui 2012 Chin. Phys. Lett. 29 077307 |
|
|
Abstract We investigate the transport properties through magnetic superlattices with asymmetric double-barrier units in monolayer graphene. In N-periodic asymmetric double-barrier units, there is (N−1)-fold resonant peak splitting for transmission, but the splitting is (2N−1)-fold in N-periodic symmetric units. The transmission depends not only on the value of incident wavevectors but also on the value and the direction of transverse wavevectors. This renders the structure's efficient wavevector filters. In addition, the conductance of standard electrons with a parabolic energy spectrum is suppressed more strongly than that of Dirac electrons, whereas the resonances are more pronounced for Dirac electrons than for standard ones.
|
|
Received: 24 April 2012
Published: 29 July 2012
|
|
|
|
|
|
[1] Novoselov K S et al 2004 Science 306 666 2005 Nature 438 197 [2] Zhang Y et al 2005 Nature 438 201 [3] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420 [4] Klein O 1929 Z. Phys. 53 157 [5] Katsnelson M I et al 2006 Nature Phys. 2 620 [6] Pereira J M et al 2006 Phys. Rev. B 74 045424 [7] Pereira J M et al 2007 Appl. Phys. Lett. 90 132122 [8] Martino A De et al 2007 Phys. Rev. Lett. 98 066802 [9] Lee S J et al 2004 Phys. Rep. 394 1 [10] Huard B et al 2007 Phys. Rev. Lett. 98 236803 [11] Williams J R et al 2007 Science 317 638 [12] Tahir M and Sabeeh K 2008 Phys. Rev. B 77 195421 [13] Wu Q S et al 2008 J. Phys.: Condens. Matter 20 485210 [14] Masir M R et al 2008 Phys. Rev. B 77 235443 [15] Zhai F and Chang K 2008 Phys. Rev. B 77 113409 [16] Masir M R et al 2009 Appl. Phys. Lett. 93 242103 [17] Masir M R et al 2009 New J. Phys. 11 095009 [18] Dell'Anna L and De Martino A 2009 Phys. Rev. B 79 045420 [19] Soodchomshom B et al 2009 Physica E 41 1310 [20] Myoung N and Ihm G 2009 Physica E 42 70 [21] Masir M R et al 2009 Phys. Rev. B 79 035409 [22] Ghosh S and Sharma M 2009 J. Phys.: Condens. Matter 21 292204 [23] Kuru S et al 2009 J. Phys.: Condens. Matter 21 455305 [24] Nasir R et al 2010 Phys. Rev. B 81 085402 [25] Sun L F, Fang C, Song Y and Guo Y 2010 J. Phys.: Condens. Matter 22 445303 [26] Li Y X 2010 J. Phys.: Condens. Matter 22 015302 [27] Biswas R, Biswas A, Hui N and Sinha C 2010 J. Appl. Phys. 108 043708 [28] Bliokh Y P, Freilikher V and Nori F 2010 Phys. Rev. B 81 075410 [29] Zhang H, Chan K S and Lin Z J 2011 Nanotechnology 22 505705 [30] Urban D F, Bercioux D, Wimmer M and Hausler W 2011 Phys. Rev. B 84 115136 [31] Dell'Anna L and De Martino A 2011 Phys. Rev. B 83 155449 [32] Sharma M and Ghosh S 2011 J. Phys.: Condens. Matter 23 055501 [33] Myoung N and Ihm G 2011 J. Appl. Phys. 109 053716 [34] Wang R Z and Yan X H 2000 Chin. Phys. Lett. 17 598 MacKinnon A 1985 Z. Phys. B: Condens. Matter 59 385 [35] Yuan R Y, Wang R Z, Xue K, Wei J S, Song X M, Wang B and Yan H 2006 Phys. Rev. B 74 024417 [36] Yang X D, Wang R Z, Guo Y, Yang W, Yu D B, Wang B and Yan H 2004 Phys. Rev. B 70 115303 [37] Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518 [38] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|