Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077304    DOI: 10.1088/0256-307X/29/7/077304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Influence of Temperature and Frequency on Dielectric Permittivity and ac Conductivity of Au/SnO2/n-Si (MOS) Structures
R. Ertuğrul, A. Tataroğlu*
Department of Physics, Faculty of Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey
Cite this article:   
R. Ertuğ, rul, A. Tataroğ et al  2012 Chin. Phys. Lett. 29 077304
Download: PDF(591KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The complex dielectric permittivity (ϵ=ϵ'-jϵ") and ac conductivity (σac) of Au/SnO2/n-Si (MOS) structures are studied using capacitance (C) and conductance (G(ω)) measurements in a wide temperature range of 125–400 K for six different frequency values. It is observed that the C and G(ω) values decrease with the increasing frequency, while they increase with the increasing temperature. The observed nature of the C is due to the inability of the dipoles to orient in a rapidly varying electric field. The experimental values of the dielectric constant ϵ', dielectric loss ϵ", loss tangent tanδ and σac are found to be strong functions of frequency and temperature. The values of the ϵ' and ϵ" are found to decrease with the increasing frequency and increase with the increasing temperature. The σac is found to increase with the increasing frequency and temperature. Activation energy (Ea), from the Arrhenius plot, is studied to discuss the conduction mechanism in a MOS structure.

Received: 20 March 2012      Published: 29 July 2012
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.22.Ch (Permittivity (dielectric function))  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
R. Ertuğ
rul
A. Tataroğ
lu
[1] Sze S M and Kwok K Ng 2007 Physics of Semiconductor Devices 3rd edn (New Jersey: John Wiley & Sons) pp 198-236
[2] Nicollian E H and Goetzberger A 1967 Appl. Phys. Lett. 10 60
[3] Pakma O, Serin N, Serin T and Alt?ndal ? 2008 J. Phys. D: Appl. Phys. 41 215103
[4] Tataro?lu A, Alt?ndal ? and Bülbül M M 2005 Microelectron. Eng. 81 140
[5] Tataro?lu A and Alt?ndal ? 2008 Microelectron. Eng. 85 1866
[6] Chattopadhyay P 1994 Solid-State Electron. 37 1759
[7] Fonash S J 1983 J. Appl. Phys. 54 1966
[8] Munnix S and Schmeits M 1983 Phys. Rev. B 27 7624
[9] G?pel W and Schierbaum K D 1995 Sensors Actuators B 26-27 1
[10] Li P G, Guo X, Wang X F and Tang W H 2009 J. Alloys Compd. 479 74
[11] Nicollian E H and Goetzberger A 1965 Appl. Phys. Lett. 7 216
[12] Losee D L 1975 J. Appl. Phys. 46 2204
[13] D?kme ?, Alt?ndal ? Tun? T and Uslu ? 2010 Microelectron. Reliability 50 39
[14] Kar S, Panchal K M, Bhattacharya S and Varma S 1982 IEEE Trans. Electron. Devices 29 1839
[15] Kannan M D, Narayandass S K, Balasubramanian C and Mangalaraj D 1990 Phys. Stat. Sol. A 121 515
[16] Matheswaran P, Sathyamoorthy R, Saravanakumar R and Velumani S 2010 Mater. Sci. Eng. B 174 269
[17] Prabakar K, Narayandass S K and Mangalaraj D 2003 Phys. Status Solidi A 199 507
[18] Szatkowski J and Sierański K 1992 Solid-State Electron. 35 1013
[19] Ero?lu A, Tataro?lu A and Alt?ndal ? 2012 Microelectron. Eng. 91 154
[20] Afandiyeva I M, Bülbül M M, Alt?ndal ? and Bengi S 2012 Microelectron. Eng. 93 50
[21] Abdel Kader M M, Elzayat M Y, Hammad T R, Aboud A I and Abdelmonem H 2011 Phys. Scr. 83 035705
[22] Tataro?lu A, Yüceda? í and Alt?ndal ? 2008 Microelectron. Eng. 85 1518
[23] Tataro?lu A 2006 Microelectron. Eng. 83 2551
[24] Karata? ? 2008 J. Non-Cryst. Solids 354 3606
[25] Sattar A A and Rahman S A 2003 Phys. Stat. Sol. A 200 415
[26] D?kme ?, Y ?ld?z D E and Alt?ndal ? 2012 Adv. Polym. Tech. 31 63
[27] Maity S, Bhattacharya D and Ray S K 2011 J. Phys. D: Appl. Phys. 44 095403
[28] Szu S P and Lin C Y 2003 Mater. Chem. Phys. 82 295
[29] Maurya D, Kumar J and Shripal 2005 J. Phys. Chem. Solids 66 1614
[30] Migahed M D, Ishra M, Fahmy T and Barakat A 2004 J. Phys. Chem. Solids 65 1121
[31] Elkestawy M A, Abdel Kader S and Amer M A 2010 Physica B 405 619
[32] Kim J S, Lee H J, Lee S Y, Kim I W and Lee S D 2010 Thin Solid Films 518 6390
[33] Dutta A and Sinha T P 2011 Matter. Res. Bull. 46 518
[34] Kumar M P, Sankarappa T, Devidas G B and Sadashivaiah P J 2009 Mater. Sci. Eng. 2 012050
[35] Karata? ? and Kara Z 2011 Microelectron. Reliability 51 2205
[36] Singh V, Kulkarni A R and Mohan T R 2003 J. Appl. Polym. Sci. 90 3602
[37] Yahia I S, Abd El-sadek M S and Yakuphano?lu F 2012 Dyes Pigments 93 1434
[38] Louati B, Hlel F and Guidara K 2009 J. Alloys Compd. 486 299
[39] Hegab N A, Afifi M A, Atyia H E and Farid A S 2009 J. Alloys Compd. 477 925
[40] Farid A M, Atyia H E and Hegab N A 2005 Vacuum 80 284
[41] Jonscher A K 1977 Nature 267 673
[42] Singh N, Agarwal A and Sanghi S 2011 Current Appl. Phys. 11 783
[43] Kumar P, Singh B P, Sinha T P and Singh N K 2011 Physica B 406 139
[44] Wang J, Zhang H, Xue D and Li Z 2009 J. Phys. D: Appl. Phys. 42 235103
Related articles from Frontiers Journals
[1] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 077304
[2] Wen-Lun Zhang. Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric[J]. Chin. Phys. Lett., 2019, 36(6): 077304
[3] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 077304
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 077304
[5] Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao, Qing-Zhu Zhang, Hua-Xiang Yin. Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel[J]. Chin. Phys. Lett., 2018, 35(5): 077304
[6] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 077304
[7] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 077304
[8] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 077304
[9] Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang, Jia-Xin Yao, Zhen-Hua Wu, Qing-Zhu Zhang, Hua-Xiang Yin. Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates[J]. Chin. Phys. Lett., 2017, 34(9): 077304
[10] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 077304
[11] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 077304
[12] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 077304
[13] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 077304
[14] Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, De-Zhao Yu, Xue-Feng Yu, Qi Guo. Hot-Carrier Effects on Total Dose Irradiated 65nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2016, 33(07): 077304
[15] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 077304
Viewed
Full text


Abstract