CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Controllable Excitation of Surface Plasmons in End-to-Trunk Coupled Silver Nanowire Structures |
ZHU Yin, WEI Hong, YANG Peng-Fei, XU Hong-Xing** |
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-146, Beijing 100190 |
|
Cite this article: |
ZHU Yin, WEI Hong, YANG Peng-Fei et al 2012 Chin. Phys. Lett. 29 077302 |
|
|
Abstract In branched nanowire structures, the controllable excitation of surface plasmons is investigated by both experiments and simulations. By focusing the excitation light at the junction between the main wire and the branch wire, surface plasmons can be selectively launched to propagate to different output terminals, depending on the polarization of the excitation light. The parameters influencing the plasmon excitation and thus emission behavior are investigated, including the branch angle, the position of the branch and the nanowire radius. The different polarization dependence of the output light is determined by the surface plasmon modes selectively excited in the junction through end-excitation or/and gap-excitation manners. For the branch wire, when the branch angle is small, the end-excitation is dominant, which makes the branched wire behave like an individual nanowire. With the increase of the branch angle, the coupling between the branch wire end and the primary wire trunk is increased, which influences the plasmon excitation in the branch wire as evidenced by the rotation of the polarization angle for maximum output. For the primary wire, the SP excitation is dependent on the branch angle, position of the junction along the primary wire, and the radii of the nanowires. The results may be important for the design of a controllable surface plasmon launcher, one of the functional components in surface-plasmon-based nanophotonic circuits.
|
|
Received: 05 April 2012
Published: 29 July 2012
|
|
PACS: |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.25.Ja
|
(Polarization)
|
|
78.67.Uh
|
(Nanowires)
|
|
|
|
|
[1] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357 [2] Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318 [3] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828 [4] Ma X, Xu X, Zheng Z, Wang K, Su Y, Fan J, Zhang R, Song L, Wang Z and Zhu J 2010 Sens. Actuators A-Phys. 157 9 [5] Xu H X and Kall M 2002 Phys. Rev. Lett. 89 246802 [6] Juan M L, Righini M and Quidant R 2011 Nature Photon. 5 349 [7] Berini P and De Leon I 2012 Nature Photon. 6 16 [8] Ozbay E 2006 Science 311 189 [9] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950 [10] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J and Xu H X 2011 Nano Lett. 11 471 [11] Wei H, Wang Z X, Tian X R, Kall M and Xu H X 2011 Nature Commun. 2 387 [12] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K and Tong L M 2009 Nano Lett. 9 4515 [13] Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110 [14] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C and Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501 [15] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403 [16] Sanders A W, Routenberg D A, Wiley B J, Xia Y N, Dufresne E R and Reed M A 2006 Nano Lett. 6 1822 [17] Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346 [18] Fang Y R, Wei H, Hao F, Nordlander P and Xu H X 2009 Nano Lett. 9 2049 [19] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402 [20] Wei H, Ratchford D, Li X Q, Xu H X and Shih C K 2009 Nano Lett. 9 4168 [21] Kolesov R, Grotz B, Balasubramanian G, Stohr R J, Nicolet A A L, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nature Phys. 5 470 [22] Li Q, Wang S S, Chen Y T, Yan M, Tong L M and Qiu M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1107 [23] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P and Xu H X 2009 Nano Lett. 9 4383 [24] Shegai T, Miljkovic V D, Bao K, Xu H X, Nordlander P, Johansson P and Kall M 2011 Nano Lett. 11 706 [25] Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P and Xu H X 2010 Nano Lett. 10 1831 [26] Shegai T, Huang Y Z, Xu H X and Kall M 2010 Appl. Phys. Lett. 96 103114 [27] Wang W H, Yang Q, Fan F R, Xu H X and Wang Z L 2011 Nano Lett. 11 1603 [28] Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P and Xu H X 2010 Phys. Rev. B 82 241402 [29] Allione M, Temnov V V, Fedutik Y, Woggon U and Artemyev M V 2008 Nano Lett. 8 31 [30] Rewitz C, Keitzl T, Tuchscherer P, Huang J, Geisler P, Razinskas G, Hecht B and Brixner T 2012 Nano Lett. 12 45 [31] Li Z P, Zhang S P, Halas N J, Nordlander P and Xu H X 2011 Small 7 593 [32] Sun Y G and Xia Y N 2002 Adv. Mater. 14 833 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|