Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077102    DOI: 10.1088/0256-307X/29/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Different Roles of a Boron Substitute for Carbon and Silicon in β-SiC
ZHOU Yan1, WANG Kun1, FANG Xiao-Yong1**, HOU Zhi-Ling2, JIN Hai-Bo2, CAO Mao-Sheng2**
1School of Science, Yanshan University, Qinghuangdao 066004
2School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
Cite this article:   
ZHOU Yan, WANG Kun, FANG Xiao-Yong et al  2012 Chin. Phys. Lett. 29 077102
Download: PDF(680KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The first-principles numerical simulation is employed to calculate the effect of replacement of carbon and silicon with boron on the electronic structure and optical properties of β-SiC. Mulliken analysis shows that the B impurity bond lengths shrink in the case of BSi, while they expand with reference to BC. In addition, BSi contains C–C, Si–Si and B–Si bonds. The calculated results show that the two systems of BC and BSi apply different dispersion. BC is in accordance with the Lorentz dispersion theory while BSi follows the Drude dispersion theory. Theoretic analysis and quantitative calculation are used for conductivity spectra in the infrared region.
Received: 03 May 2012      Published: 29 July 2012
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.40.Fy (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077102       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Yan
WANG Kun
FANG Xiao-Yong
HOU Zhi-Ling
JIN Hai-Bo
CAO Mao-Sheng
[1] Steckla A J, Devrajan J, Tlali S, Jackson H E, Tran C, Gorin S N and lvanova L M 1996 Appl. Phys. Lett. 69 3824
[2] Fan J Y, Wu X L, Zhao P Q, Chu P K 2006 Phys. Lett. A 360 336
[3] Sha Z D, Wu X M and Zhuge L J 2006 Phys. Lett. A 355 228
[4] Costa A K and Camargo Jr. S S 2003 Surf. Coat. Technol. 163 176
[5] Ordine A, Achete C A, Mattos O R, I C P Margarit I C P and Camargo S S Jr 2000 Surf. Coat. Technol. 133 583
[6] Zhou Y, Kang Y Q, Fang X Y, Yuan J, Shi X L, Song W L and Cao M S 2008 Chin. Phys. Lett. 25 1902
[7] Zou G Z, Cao M S, Zhang L, Li J G, Xu H and Chen Y J 2006 Surf. Coat. Technol. 201 108
[8] Lu R, Fang X Y, Kang Y Q, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 044101
[9] Sarro P M 2000 Sensors Actuators A 82 10
[10] Yang Y T, Ekinci K L, Huang X M H, Schavone L M, Roukes M L Zorman C A and Mehregany M 2001 Appl. Phys. Lett. 78 162
[11] Tan C, Wu X L, Deng S S, Huang G S, Liu X N and Bao X M 2003 Phys. Lett. A 310 236
[12] Wang Z P, Yousefi H R, Nishino Y, Ito H and Masugata K 2008 Phys. Lett. A 372 7179
[13] Gali A 2006 Phys. Rev. B 73 245415
[14] Sha Z D, Wu X M and Zhuge L J 2005 Phys. Lett. A 346 186
[15] Giannazzo F, Roccaforte F and Raineri V 2007 Appl. Phys. Lett. 91 202104
[16] Zielinski M, Portail M, Chassagne T, Juillaguet S and Peyre H 2008 J. Cryst. Growth 310 3174
[17] Liu H S, Fang X Y, Song W L, Hou Z L, Lu R, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 067101
[18] Hisayoshi I, Thomas T, Christian P and Gerhard P 1998 Appl. Phys. Lett. 73 1427
[19] Heera V, Madhusoodanan N, Skorupa W, Dubois C and Romanus H 2006 J. Appl. Phys. 99 123716
[20] Son N T, Henry A, Isoya J, Katagiri M, Umdda T, Gali A and Janzén E 2006 Phys. Rev. B 73 075201
[21] Negoro Y, Katsumoto K, Kimoto T and Matsunami H 2004 J. Appl. Phys. 96 224
[22] Fukumoto A 1996 Phys. Rev. B 53 4458
[23] Bockstedte M, Mattausch A and Pankratov O 2004 Phys. Rev. B 70 115203
[24] Deák P, Aradi B, Gali A, Gerstmann U and Choyke W J 2003 Mater Sci. Forum 433 523
[25] Greulich-Weber S 1997 Phys. Status Solidi A 162 95
[26] Suttrop W, Pensl G and Lanig P 1990 Appl. Phys. A 51 231
[27] Gao Y, Soloviev S I and Sudarshan T S 2003 Appl. Phys. Lett. 83 905
[28] Gali A, Hornos T and Deak P 2005 Appl. Phys. Lett. 86 102108
[29] Wang J J, Fang X Y, Feng G Y, Song W L, Hou Z L, Jin H B, Yuan J and Cao M S 2010 Phys. Lett. A 374 2286
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 077102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 077102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 077102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 077102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 077102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 077102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 077102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 077102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 077102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 077102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 077102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 077102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 077102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077102
Viewed
Full text


Abstract