CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Different Roles of a Boron Substitute for Carbon and Silicon in β-SiC |
ZHOU Yan1, WANG Kun1, FANG Xiao-Yong1**, HOU Zhi-Ling2, JIN Hai-Bo2, CAO Mao-Sheng2** |
1School of Science, Yanshan University, Qinghuangdao 066004 2School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 |
|
Cite this article: |
ZHOU Yan, WANG Kun, FANG Xiao-Yong et al 2012 Chin. Phys. Lett. 29 077102 |
|
|
Abstract The first-principles numerical simulation is employed to calculate the effect of replacement of carbon and silicon with boron on the electronic structure and optical properties of β-SiC. Mulliken analysis shows that the B impurity bond lengths shrink in the case of BSi, while they expand with reference to BC. In addition, BSi contains C–C, Si–Si and B–Si bonds. The calculated results show that the two systems of BC and BSi apply different dispersion. BC is in accordance with the Lorentz dispersion theory while BSi follows the Drude dispersion theory. Theoretic analysis and quantitative calculation are used for conductivity spectra in the infrared region.
|
|
Received: 03 May 2012
Published: 29 July 2012
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
78.40.Fy
|
(Semiconductors)
|
|
|
|
|
[1] Steckla A J, Devrajan J, Tlali S, Jackson H E, Tran C, Gorin S N and lvanova L M 1996 Appl. Phys. Lett. 69 3824 [2] Fan J Y, Wu X L, Zhao P Q, Chu P K 2006 Phys. Lett. A 360 336 [3] Sha Z D, Wu X M and Zhuge L J 2006 Phys. Lett. A 355 228 [4] Costa A K and Camargo Jr. S S 2003 Surf. Coat. Technol. 163 176 [5] Ordine A, Achete C A, Mattos O R, I C P Margarit I C P and Camargo S S Jr 2000 Surf. Coat. Technol. 133 583 [6] Zhou Y, Kang Y Q, Fang X Y, Yuan J, Shi X L, Song W L and Cao M S 2008 Chin. Phys. Lett. 25 1902 [7] Zou G Z, Cao M S, Zhang L, Li J G, Xu H and Chen Y J 2006 Surf. Coat. Technol. 201 108 [8] Lu R, Fang X Y, Kang Y Q, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 044101 [9] Sarro P M 2000 Sensors Actuators A 82 10 [10] Yang Y T, Ekinci K L, Huang X M H, Schavone L M, Roukes M L Zorman C A and Mehregany M 2001 Appl. Phys. Lett. 78 162 [11] Tan C, Wu X L, Deng S S, Huang G S, Liu X N and Bao X M 2003 Phys. Lett. A 310 236 [12] Wang Z P, Yousefi H R, Nishino Y, Ito H and Masugata K 2008 Phys. Lett. A 372 7179 [13] Gali A 2006 Phys. Rev. B 73 245415 [14] Sha Z D, Wu X M and Zhuge L J 2005 Phys. Lett. A 346 186 [15] Giannazzo F, Roccaforte F and Raineri V 2007 Appl. Phys. Lett. 91 202104 [16] Zielinski M, Portail M, Chassagne T, Juillaguet S and Peyre H 2008 J. Cryst. Growth 310 3174 [17] Liu H S, Fang X Y, Song W L, Hou Z L, Lu R, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 067101 [18] Hisayoshi I, Thomas T, Christian P and Gerhard P 1998 Appl. Phys. Lett. 73 1427 [19] Heera V, Madhusoodanan N, Skorupa W, Dubois C and Romanus H 2006 J. Appl. Phys. 99 123716 [20] Son N T, Henry A, Isoya J, Katagiri M, Umdda T, Gali A and Janzén E 2006 Phys. Rev. B 73 075201 [21] Negoro Y, Katsumoto K, Kimoto T and Matsunami H 2004 J. Appl. Phys. 96 224 [22] Fukumoto A 1996 Phys. Rev. B 53 4458 [23] Bockstedte M, Mattausch A and Pankratov O 2004 Phys. Rev. B 70 115203 [24] Deák P, Aradi B, Gali A, Gerstmann U and Choyke W J 2003 Mater Sci. Forum 433 523 [25] Greulich-Weber S 1997 Phys. Status Solidi A 162 95 [26] Suttrop W, Pensl G and Lanig P 1990 Appl. Phys. A 51 231 [27] Gao Y, Soloviev S I and Sudarshan T S 2003 Appl. Phys. Lett. 83 905 [28] Gali A, Hornos T and Deak P 2005 Appl. Phys. Lett. 86 102108 [29] Wang J J, Fang X Y, Feng G Y, Song W L, Hou Z L, Jin H B, Yuan J and Cao M S 2010 Phys. Lett. A 374 2286 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|