CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Optimal Electron Density Mechanism for Hydrogen on the Surface and at a Vacancy in Tungsten |
LIU Yue-Lin1**, GAO An-Yuan1, LU Wei1, ZHOU Hong-Bo2, ZHANG Ying2 |
1Department of Physics, Yantai University, Yantai 264005
2Department of Physics, Beihang University, Beijing 100191 |
|
Cite this article: |
LIU Yue-Lin, GAO An-Yuan, LU Wei et al 2012 Chin. Phys. Lett. 29 077101 |
|
|
Abstract In terms of first-principles investigation of H-tungsten (W) interaction, we reveal a generic optimal electron density mechanism for H on W(110) surface and at a vacancy in W. Both the surface and vacancy internal surface can provide a quantitative optimal electron density of ∼0.10 electron/Å3 for H binding to make H stability. We believe that such a mechanism is also applicable to other surfaces such as W(100) surface because of the (100) surface also providing an optimal electron density for H binding, and further likely actions on other metals.
|
|
Received: 27 December 2011
Published: 29 July 2012
|
|
PACS: |
71.20.Be
|
(Transition metals and alloys)
|
|
67.63.-r
|
(Hydrogen and isotopes)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
|
|
|
[1] Magyari-Kope B, Ozolins V and Wolverton C 2006 Phys. Rev. B 73 220101 [2] Li S, Jena P and Ahuja R 2006 Phys. Rev. B 73 214107 [3] Lu G and Kaxiras E 2005 Phys. Rev. Lett. 94 155501 [4] Condon J B and Schober T J 1993 J. Nucl. Mater. 207 1 [5] Liu Y L, Zhou H B, Jin S, Zhang Y and Lu G H 2010 Chin. Phys. Lett. 27 127101 [6] Liu Y L, Zhang Y, Zhou H B, Liu F, Luo G N and Lu G H 2009 Phys. Rev. B 79 172103 [7] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl Fusion 50 115010 [8] Zhou H B, Liu Y L, Zhang Y and Lu G H 2010 Nucl. Fusion 50 025016 [9] Xu J and Zhao J 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3170 [10] Lee H TL, Haasz A A, Davis J W and Macaulary-Newcombe R G 2007 J. Nucl. Mater. 360 196 [11] Stensgaard I, Feldman L C and Silverman P J 1979 Phys. Rev. Lett. 42 247 [12] Yu R, Krakauer H and Singh D 1992 Phys. Rev. B 45 8671 [13] Xu W and Adams J B 1994 Surf. Sci. 319 45 [14] Estrup P J and Anderson J 1966 J. Chem. Phys. 45 2254 [15] Henriksson K O E, Vortler K, Dreissigacker S, Nordlund K and Keinonen J 2006 Surf. Sci. 600 3167 [16] Busnengo H F and Martinez A E 2008 J. Phys. Chem. C 112 5579 [17] Heinola K and Ahlgren T 2010 Phys. Rev. B 81 073409 [18] Gonchar V V, Kagan U M, Kanash O U, Naumovets A G and Fedorus A G 1983 Zh. Eksp. Teor. Fiz. 84 249 [19] Altman M, Chung J W, Estrup P J, Kosterlitz J M, Prybyla J, Sahu D and Ying S C 1987 J. Vac. Sci. Technol. A 5 1045 [20] Balden M, Lehwald S, Preuss E and Ibach H 1994 Surf. Sci. 307-309 1141 [21] Difoggio R and Gomer R 1982 Phys. Rev. B 25 3490 [22] Wang S C and Gomer R 1985 J. Chem. Phys. 83 4193 [23] Nojima A and Yamashita K 2007 Surf. Sci. 601 3003 [24] Difoggio R and Gomer R 1980 Phys. Rev. Lett. 44 1258 [25] Kay M, Darling G R and Holloway S 1998 J. Chem. Phys. 108 4614 [26] Kwak K W, Chou M Y and Troullier N 1996 Phys. Rev. B 53 13735 [27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [29] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [30] Blochl P E 1994 Phys. Rev. B 50 17953 [31] Kittel C 1986 Introduction to Solid State Physics 6th edn (New York: Wiley) [32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [33] Kittel C 1986 Introduction to Solid State Physics 7th edn (New York: Wiley) [34] Herlt H J and Bauer E 1986 Surf. Sci. 175 336 [35] Norskov J K and Lang N D 1980 Phys. Rev. B 21 2131 [36] Nordlander P and Norskov J K 1984 Surf. Sci. 136 59 [37] Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037 [38] Willaime F 2003 J. Nucl. Mater. 323 205 [39] Fu C C, Willaime F and Ordejon P 2004 Phys. Rev. Lett. 92 175503 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|