Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077101    DOI: 10.1088/0256-307X/29/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Optimal Electron Density Mechanism for Hydrogen on the Surface and at a Vacancy in Tungsten
LIU Yue-Lin1**, GAO An-Yuan1, LU Wei1, ZHOU Hong-Bo2, ZHANG Ying2
1Department of Physics, Yantai University, Yantai 264005
2Department of Physics, Beihang University, Beijing 100191
Cite this article:   
LIU Yue-Lin, GAO An-Yuan, LU Wei et al  2012 Chin. Phys. Lett. 29 077101
Download: PDF(490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In terms of first-principles investigation of H-tungsten (W) interaction, we reveal a generic optimal electron density mechanism for H on W(110) surface and at a vacancy in W. Both the surface and vacancy internal surface can provide a quantitative optimal electron density of ∼0.10 electron/Å3 for H binding to make H stability. We believe that such a mechanism is also applicable to other surfaces such as W(100) surface because of the (100) surface also providing an optimal electron density for H binding, and further likely actions on other metals.

Received: 27 December 2011      Published: 29 July 2012
PACS:  71.20.Be (Transition metals and alloys)  
  67.63.-r (Hydrogen and isotopes)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yue-Lin
GAO An-Yuan
LU Wei
ZHOU Hong-Bo
ZHANG Ying
[1] Magyari-Kope B, Ozolins V and Wolverton C 2006 Phys. Rev. B 73 220101
[2] Li S, Jena P and Ahuja R 2006 Phys. Rev. B 73 214107
[3] Lu G and Kaxiras E 2005 Phys. Rev. Lett. 94 155501
[4] Condon J B and Schober T J 1993 J. Nucl. Mater. 207 1
[5] Liu Y L, Zhou H B, Jin S, Zhang Y and Lu G H 2010 Chin. Phys. Lett. 27 127101
[6] Liu Y L, Zhang Y, Zhou H B, Liu F, Luo G N and Lu G H 2009 Phys. Rev. B 79 172103
[7] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl Fusion 50 115010
[8] Zhou H B, Liu Y L, Zhang Y and Lu G H 2010 Nucl. Fusion 50 025016
[9] Xu J and Zhao J 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3170
[10] Lee H TL, Haasz A A, Davis J W and Macaulary-Newcombe R G 2007 J. Nucl. Mater. 360 196
[11] Stensgaard I, Feldman L C and Silverman P J 1979 Phys. Rev. Lett. 42 247
[12] Yu R, Krakauer H and Singh D 1992 Phys. Rev. B 45 8671
[13] Xu W and Adams J B 1994 Surf. Sci. 319 45
[14] Estrup P J and Anderson J 1966 J. Chem. Phys. 45 2254
[15] Henriksson K O E, Vortler K, Dreissigacker S, Nordlund K and Keinonen J 2006 Surf. Sci. 600 3167
[16] Busnengo H F and Martinez A E 2008 J. Phys. Chem. C 112 5579
[17] Heinola K and Ahlgren T 2010 Phys. Rev. B 81 073409
[18] Gonchar V V, Kagan U M, Kanash O U, Naumovets A G and Fedorus A G 1983 Zh. Eksp. Teor. Fiz. 84 249
[19] Altman M, Chung J W, Estrup P J, Kosterlitz J M, Prybyla J, Sahu D and Ying S C 1987 J. Vac. Sci. Technol. A 5 1045
[20] Balden M, Lehwald S, Preuss E and Ibach H 1994 Surf. Sci. 307-309 1141
[21] Difoggio R and Gomer R 1982 Phys. Rev. B 25 3490
[22] Wang S C and Gomer R 1985 J. Chem. Phys. 83 4193
[23] Nojima A and Yamashita K 2007 Surf. Sci. 601 3003
[24] Difoggio R and Gomer R 1980 Phys. Rev. Lett. 44 1258
[25] Kay M, Darling G R and Holloway S 1998 J. Chem. Phys. 108 4614
[26] Kwak K W, Chou M Y and Troullier N 1996 Phys. Rev. B 53 13735
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[30] Blochl P E 1994 Phys. Rev. B 50 17953
[31] Kittel C 1986 Introduction to Solid State Physics 6th edn (New York: Wiley)
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Kittel C 1986 Introduction to Solid State Physics 7th edn (New York: Wiley)
[34] Herlt H J and Bauer E 1986 Surf. Sci. 175 336
[35] Norskov J K and Lang N D 1980 Phys. Rev. B 21 2131
[36] Nordlander P and Norskov J K 1984 Surf. Sci. 136 59
[37] Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
[38] Willaime F 2003 J. Nucl. Mater. 323 205
[39] Fu C C, Willaime F and Ordejon P 2004 Phys. Rev. Lett. 92 175503
Related articles from Frontiers Journals
[1] Pan Nie, Huakun Zuo, Lingxiao Zhao, and Zengwei Zhu. Anisotropic Fermi Surfaces, Electrical Transport, and Two-Dimensional Fermi Liquid Behavior in Layered Ternary Boride MoAlB[J]. Chin. Phys. Lett., 2022, 39(5): 077101
[2] Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li, Yuan-Yuan Han, Xi-Xiang Xu, Xin-Long Zhao, Xia Wang, Yuan-Yuan Pan, Hong-Sen Li, and Qiang Li. Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry[J]. Chin. Phys. Lett., 2022, 39(2): 077101
[3] Yequan Chen, Ruxin Liu, Yongda Chen, Xiao Yuan, Jiai Ning, Chunchen Zhang, Liming Chen, Peng Wang, Liang He, Rong Zhang, Yongbing Xu, and Xuefeng Wang. Large-Area Freestanding Weyl Semimetal WTe$_{2}$ Membranes[J]. Chin. Phys. Lett., 2021, 38(1): 077101
[4] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 077101
[5] Xiang-Wei Huang, Xiao-Xiong Liu, Peng Yu, Pei-Ling Li, Jian Cui, Jian Yi, Jian-Bo Deng, Jie Fan, Zhong-Qing Ji, Fan-Ming Qu, Xiu-Nian Jing, Chang-Li Yang, Li Lu, Zheng Liu, Guang-Tong Liu. Magneto-Transport and Shubnikov–de Haas Oscillations in the Type-II Weyl Semimetal Candidate NbIrTe$_{4}$ Flake[J]. Chin. Phys. Lett., 2019, 36(7): 077101
[6] D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, J. L. Luo. Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi[J]. Chin. Phys. Lett., 2019, 36(7): 077101
[7] Lin Feng, Xue-Ying Zhang. First-Principles Investigation on the Fully Compensated Ferrimagnetic Behavior in Ti$_{2}$NbSb and TiZrNbSb[J]. Chin. Phys. Lett., 2019, 36(6): 077101
[8] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 077101
[9] Ning-Ning Zu, Rui Li, Ya-Hui Zheng, Lin Chen. First-Principles Calculation for the Half Metallic Properties of La$_{2}$NbMnO$_{6}$[J]. Chin. Phys. Lett., 2017, 34(10): 077101
[10] YI Zhi-Jun. Quasi-Particle Properties in Copper Using the GW Approximation[J]. Chin. Phys. Lett., 2015, 32(01): 077101
[11] H. A. Rahnamaye Aliabad, M. Bazrafshan, H. Vaezi, Masood Yousaf, Junaid Munir, M. A. Saeed. Optoelectronic Properties of Pure and Co Doped Indium Oxide by Hubbard and modified Becke–Johnson Exchange Potentials[J]. Chin. Phys. Lett., 2013, 30(12): 077101
[12] QI Chen-Jin, FENG Jing, ZHOU Rong-Feng, JIANG Ye-Hua, ZHOU Rong. First Principles Study on the Stability and Mechanical Properties of MB (M=V, Nb and Ta) Compounds[J]. Chin. Phys. Lett., 2013, 30(11): 077101
[13] TANG Chun-Mei, ZHU Wei-Hua, ZHANG Ai-Mei, ZHANG Kai-Xiao, LIU Ming-Yi . A Density Functional Study of the Gold Cages MAu16 (M = Si, Ge, and Sn)[J]. Chin. Phys. Lett., 2013, 30(7): 077101
[14] LIU Yue-Lin, ZHOU Hong-Bo, JIN Shuo, ZHANG Ying, LU Guang-Hong . Effects of H on Electronic Structure and Ideal Tensile Strength of W: A First-Principles Calculation[J]. Chin. Phys. Lett., 2010, 27(12): 077101
[15] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 077101
Viewed
Full text


Abstract