CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs |
LI Li-Gong1,2, LIU Shu-Man1**, LUO Shuai1, YANG Tao1, WANG Li-Jun1, LIU Feng-Qi1, YE Xiao-Ling1, XU Bo1, WANG Zhan-Guo1 |
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Department of Physics, Tsinghua University, Beijing 100084 |
|
Cite this article: |
LI Li-Gong, LIU Shu-Man, LUO Shuai et al 2012 Chin. Phys. Lett. 29 076801 |
|
|
Abstract InAs/GaSb type-II superlattices (SLs), Zn-doped GaSb and Si-doped InAs were grown on semi-insulating (001) GaAs substrates by metalorganic chemical vapor deposition. X-ray diffraction reveals that complete strain compensation between the SLs and the GaSb buffer layer is achieved in our SL samples. The relationship between the hole concentration p in GaSb and the diethylzinc (DEZn) flow rate is p∝[DEZn]0.57. The electron concentration in InAs does not show good linearity with the SiH4 flow rate. The growth rate of the p-GaSb epilayer is decreased as the DEZn mole fraction increases, while the growth rate of the n-InAs epilayer is weakly dependent on the SiH4 flow rate.
|
|
Received: 23 February 2012
Published: 29 July 2012
|
|
PACS: |
68.65.Cd
|
(Superlattices)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] Wei Y and Razeghi M 2004 Phys. Rev. B 69 085316 [2] Grein C H, Young P M, Flatte M E and Ehrenreich H 1995 J. Appl. Phys. 78 7143 [3] Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545 [4] Chow D H, Miles R H, Schulman J N, Collins D A and McGrill T C 1991 Semicond. Sci. Technol. 6 C47 [5] Mallick S, Banerjee K, Ghosh S, Rodriguez J B and Krishna S 2007 IEEE Photon. Technol. Lett. 19 1843 [6] Pour S A, Huang E K, Chen G, Haddadi A, Nguyen B M and Razeghi M 2011 Appl. Phys. Lett. 98 143501 [7] Gautam N, Naydenkov M, Myers S, Barve A V, Plis E, Rotter T, Dawson L R and Krishna S 2011 Appl. Phys. Lett. 98 121106 [8] Biefeld R M 2002 Mater. Sci. Eng. R 36 105 [9] Aardvark, Mason N J and Walker P J 1997 Prog. Cryst. Growth Charact. 35 207 [10] Zhang X B, Ryou J H, Dupuis R D, Petschke A, Mou S, Chuang S L, Xu C and Hsieh K C 2006 Appl. Phys. Lett. 88 072104 [11] Li L G, Liu S M, Luo S, Yang T, Wang L J, Liu F Q, Ye X L, Xu B and Wang Z G 2011 Chin. Phys. Lett. 28 116802 [12] Li L G, Liu S M, Luo S, Yang T, Wang L J, Liu F Q, Ye X L, Xu B and Wang Z G 2012 Europhys. Lett. 97 36001 [13] Vurgaftman I, Meyer J R and Ram-Mohan L R, 2001 Appl. Phys. Rev. 89 5815 [14] Haugan H J, Grazulis L, Brown G J and Mahalingam K 2004 J. Cryst. Growth 261 471 [15] Shanabrook B V, Bennett B R and Wagner R J 1993 Phys. Rev. B 48 17172 [16] Hjelt K and Tuomi T 1997 J. Cryst. Growth 170 794 [17] Su Y K, Huan H and Chang P H 1993 J. Appl. Phys. 73 56 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|