CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Growth, Mechanical and Thermal Properties of Bi4Si3O12 Single Crystals |
SHEN Hui, XU Jia-Yue**, PING Wei-Jie, HE Qing-Bo, ZHANG Yan, JIN Min, JIANG Guo-Jian |
School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 |
|
Cite this article: |
SHEN Hui, XU Jia-Yue, PING Wei-Jie et al 2012 Chin. Phys. Lett. 29 076501 |
|
|
Abstract Bi4Si3O12 (BSO) is an excellent scintillation crystal, and is becoming the desirable candidate for dual-readout calorimeters in high-energy physics. In this work, high quality BSO crystals are successfully grown by the modified Bridgman method. For the first time, its mechanical and thermal properties are investigated and compared with those of the famous scintillation crystal Bi4Ge3O12 (BGO). The Vickers hardness and fracture toughness of BSO crystal are higher than those of BGO crystal. Its specific heat, thermal diffusivity and thermal conductivity are measured to be 0.319 J⋅gK-1, 1.54 mm2⋅s-1 and 3.29 W⋅m-1K-1 at 298 K, respectively. The average thermal expansion coefficient is calculated to be 7.07×10-6 K-1 from 300 to 1173 K. Compared with BGO crystal, BSO crystal possesses larger specific heat, thermal conductivity and smaller thermal expansion. These results indicate that BSO crystals possess better mechanical and thermal properties, which will benefit its practical applications.
|
|
Received: 27 February 2012
Published: 29 July 2012
|
|
PACS: |
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
81.10.Fq
|
(Growth from melts; zone melting and refining)
|
|
|
|
|
[1] Zhuravleva M, Chani V I, Yanagida T and Yoshikawa A 2008 J Cryst. Growth 310 2152 [2] Ishii M, Harada K, Hirose Y et al 2002 Opt. Mater. 19 201 [3] Lalic M V and Souza S O 2008 Opt. Mater. 30 1189 [4] Xu J Y, Wang H, He Q B et al 2009 J. Chin. Ceram. Soc. 37 295 [5] Fei Y T, Sun R Y, Fan S J and Xu J Y 1999 Cryst. Res. Technol. 34 1149 [6] Wang H, Chen H H, Xu J Y, Hu G Q and Zhao J T 2011 Nucl. Instrum. Methods A 631 58 [7] Gaudio G 2010 Nucl. Instrum. Methods A 617 85 [8] N Akchurin, F Bedeschi, A Cardini et al 2011 Nucl. Instrum. Methods A 640 91 [9] Shimizu H, Miyahara F, Hariu H et al 2005 Nucl. Instrum. Methods A 550 258 [10] Akchurin N, Bedeschi F, Cardini A et al 2011 Nucl. Instrum. Methods A 638 47 [11] Gaudio G 2011 Nucl. Instrum. Methods A 628 339 [12] Hua J, Kim H J, Rooh G et al 2011 Nucl. Instrum. Methods A 648 73 [13] Wang H, Zhang Z J, Zhao J T et al 2010 Chin. Phys. Lett. 27 026101 [14] Zhang C, Li Z, Cong H J et al 2010 J. Alloy Compd. 507 335 [15] Shen H, Xu J Y, Wu A H et al 2009 Mater. Sci. Eng. B 157 77 [16] Zhang Y, Xu J Y and Shao P F 2011 J Cryst. Growth 318 920 [17] Jin M, Fang Y Z, Shen H et al 2011 Chin. Phys. Lett. 28 086101 [18] Tang H L, Xu J, Li H J et al 2009 Mater. Lett. 63 1800 [19] Mohebi M, Liang J Q and Soileau M J 1989 Appl. Opt. 28 3681 [20] Yu Y G, Cheng Y, Zhang H J et al 2006 Mater. Lett. 60 1014 [21] Xi T G, Fei Y, Leung W P et al 1989 J. Mater. Sci. Lett. 8 1317 [22] Fan J, Zhang H, Wang J, Jiang M et al 2006 J. Appl. Phys. 100 063513 [23] Ran D G, Xia H R, Sun S Q et al 2006 Mater. Sci. Eng. B 130 206 [24] Zhao H Y, Wang J Y, Li J et al 2006 J. Cryst. Growth 293 223 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|