Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 076401    DOI: 10.1088/0256-307X/29/7/076401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model
JI Bin, LUO Xian-Wu**, WU Yu-Lin, XU Hong-Yuan
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084
Cite this article:   
JI Bin, LUO Xian-Wu, WU Yu-Lin et al  2012 Chin. Phys. Lett. 29 076401
Download: PDF(2115KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Numerical simulations of unsteady cavitating flow around a NACA66-mod hydrofoil were performed using the partially-averaged Navier–Stokes method with different values of the resolution control parameters (fk=1.0–0.2, fϵ=1). With decreasing fk, the predicted cavitating flow becomes unsteady as the time-averaged turbulent viscosity at the rear part of the attached cavity is gradually reduced. For fk=0.9 and 0.8, the cavity becomes unstable and its length dramatically expands and shrinks, but the calculation fails to predict the vapor cloud shedding behavior observed experimentally. With smaller fk less than 0.7, the cloud shedding behavior is simulated numerically and the predicted cavity shedding frequency increases. With fk=0.2, the whole cavitating flow evolution can be reasonably reproduced including the cavity growth/destabilization observed previously. The re-entrant flow along the suction surface of the hydrofoil is the main trigger to cause the vapor cloud shedding. The wall pressure along the hydrofoil surface oscillates greatly due to the dynamic cavity shedding. Comparing the simulations and experiments, it is confirmed that for the PANS method, resolution control parameters of fk=0.2 and fϵ=1 are recommended for numerical simulations of unsteady cavitating flows. Thus, the present study shows that the PANS method is an effective approach for predicting unsteady cavitating flow over hydrofoils.

Received: 16 November 2011      Published: 29 July 2012
PACS:  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/076401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/076401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JI Bin
LUO Xian-Wu
WU Yu-Lin
XU Hong-Yuan
[1] Wang G Y, Senocak I, Shyy W, Ikohagi T and Cao S L 2001 Prog. Aerospace Sci. 37 551
[2] Kubota A, Kato H and Yamaguchi H 1992 J. Fluid Mech. 240 59
[3] Coutier-Delgosha O, Fortes-Patella R and Reboud J L 2003 J. Fluids Eng. 125 38
[4] Senocak I and Shyy W 2004 Int. J. Numer. Methods Fluids 44 975
[5] Singhal A K, Athavale M M, Li H Y and Jiang Y 2002 J. Fluids Eng. 124 617
[6] Kunz R F, Siebert B W, Cope W K, Foster N F, Antal S P and Ettorre S M 1998 Comput. Fluids 27 741
[7] Wang G and Ostoja-Starzewski M 2007 Appl. Math. Modelling 31 417
[8] Huang B A and Wang G Y 2011 Chin. Phys. Lett. 28 026401
[9] Wu J Y, Wang G Y and Shyy W 2005 Int. J. Numer. Methods Fluids 49 739
[10] Girimaji S S 2006 J. Appl. Mech. 73 413
[11] Huang B A and Wang G Y 2011 J. Hydrodyn. 23 26
[12] Zwart P J, Gerber A G and Belamri T 2004 Int. Conf. Multiphase Flow (Yokohama Japan 30 May–3 June 2004)
[13] Ji B, Luo X W, Zhang Y, Ran H J, Xu H Y and Wu Y L 2010 Chin. Phys. Lett. 27 096401
[14] Leroux J B, Astolfi J A and Billard J Y 2004 J. Fluids Eng. 126 94
[15] Leroux J B, Coutier-Delgosha O and Astolfi J A 2005 Phys. Fluids. 17 052101
[16] Zhou L J and Wang Z 2008 J. Fluids Eng. 130 011302
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 076401
[2] Rehman Fazal, Jia-Zhen Li, Zhi-Wen Chen, Yuan Qin, Ya-Yi Lin, Zuan-Xian Zhang, Shan-Chao Zhang, Wei Huang, Hui Yan, Shi-Liang Zhu. Production of $^{87}$Rb Bose–Einstein Condensate with a Simple Evaporative Cooling Method[J]. Chin. Phys. Lett., 2020, 37(3): 076401
[3] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 076401
[4] Ting Chen, Yu-Ning Zhang, Xiao-Ze Du. Determination of the Minimum Wave Speed for the Modelling of Ventilated Cavitation[J]. Chin. Phys. Lett., 2016, 33(11): 076401
[5] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 076401
[6] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 076401
[7] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 076401
[8] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 076401
[9] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 076401
[10] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 076401
[11] YU An, LUO Xian-Wu, JI Bin, HUANG Ren-Fang, HIDALGO Victor, KIM Song Hak. Cavitation Simulation with Consideration of the Viscous Effect at Large Liquid Temperature Variation[J]. Chin. Phys. Lett., 2014, 31(08): 076401
Viewed
Full text


Abstract