Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 076101    DOI: 10.1088/0256-307X/29/7/076101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Collision Energy Dependence of Defect Formation in Graphene
MAO Fei1,2, ZHANG Chao1,2, ZHANG Yan-Wen3, ZHANG Feng-Shou1,2**
1The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2Beijing Radiation Center, Beijing 100875
3Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Cite this article:   
MAO Fei, ZHANG Chao, ZHANG Yan-Wen et al  2012 Chin. Phys. Lett. 29 076101
Download: PDF(742KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular dynamics simulations are performed using an empirical potential to simulate the collision process of an energetic carbon atom hitting a graphene sheet. According to the different impact locations within the graphene sheet, the incident threshold energies of different defects caused by the collision are determined to be 22 eV for a single vacancy, 36 eV for a divacancy, 60 eV for a Stone-Wales defect, and 65 eV for a hexavacancy. Study of the evolution and stability of the defects formed by these collisions suggests that the single vacancy reconstructs into a pentagon pair and the divacancy transforms into a pentagon-octagon-pentagon configuration. The displacement threshold energy in graphene is investigated by using the dynamical method, and a reasonable value 22.42 eV is clarified by eliminating the heating effect induced by the collision.
Received: 06 January 2012      Published: 29 July 2012
PACS:  81.05.ue (Graphene)  
  61.72.J- (Point defects and defect clusters)  
  61.80.Az (Theory and models of radiation effects)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/076101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/076101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MAO Fei
ZHANG Chao
ZHANG Yan-Wen
ZHANG Feng-Shou
[1] Novoselov K S et al 2004 Science 306 666
[2] Lee C et al 2008 Science 321 385
[3] Katsnelson M I 2007 Mater. Today 10 20
[4] Liao L et al 2010 Nature 467 305
[5] Terrones M et al 2000 Science 288 1226
[6] Terrones M et al 2002 Phys. Rev. Lett. 89 075505
[7] Teweldebrhan D and Balandin A A 2009 Appl. Phys. Lett. 94 013101
[8] Yasuda M et al 2011 J. Appl. Phys. 109 054304
[9] Krasheninnikov A V and Banhart F 2007 Nature Mater. 6 723
[10] ?hlgren E H, Kotakoski J and Krasheninnikov A V 2011 Phys. Rev. B 83 115424
[11] Carlsson J M and Scheffler M 2006 Phys. Rev. Lett. 96 046806
[12] Meyer J C et al 2008 Nano Lett. 8 3582
[13] Boukhvalov D W and Katsnelson M I 2008 Nano Lett. 8 4373
[14] Stone A J and Wales D J 1986 Chem. Phys. Lett. 128 501
[15] Hashimoto A et al 2004 Nature 430 870
[16] Gómez-Navarro C et al 2010 Nano Lett. 10 1144
[17] Lehtinen O et al 2010 Phys. Rev. B 81 153401
[18] Baraket M et al 2010 Appl. Phys. Lett. 96 231501
[19] Takai T et al 1990 J. Phys. Chem. 94 4480
[20] Tersoff J 1988 Phys. Rev. Lett. 61 2879
[21] Brenner D W 1990 Phys. Rev. B 42 9458
[22] Wang Z X et al 2000 Phys. Rev. B 61 R2472
[23] Cheng H P and Landman U 1993 Science 260 1304
[24] Zhang Y W et al 2010 Phys. Rev. B 82 184105
[25] Jellinek J and Goldberg A 2000 J. Chem. Phys. 113 2570
[26] Suenaga K et al 2007 Nature Nanotechnol. 2 358
[27] Lusk M T and Carr L D Carr 2008 Phys. Rev. Lett. 100 175503
[28] Krasheninnikov A V, Banhart F, Li J X, Foster A S and Nieminen R M 2005 Phys. Rev. B 72 125428
[29] Amorim R G et al 2007 Nano Lett. 7 2459
[30] Kotakoski J, Krasheninnikov A V, Kaiser U and Meyer J C 2011 Phys. Rev. Lett. 106 105505
[31] Banhart F 1999 Rep. Prog. Phys. 62 1181
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 076101
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 076101
[3] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 076101
[4] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 076101
[5] Zhong Wang, Zhiyang Yuan, and Feng Liu. Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect[J]. Chin. Phys. Lett., 2020, 37(9): 076101
[6] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 076101
[7] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 076101
[8] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 076101
[9] ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies[J]. Chin. Phys. Lett., 2015, 32(06): 076101
[10] GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie, NAN Hai-Yan, NI Zhen-Hua. Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene[J]. Chin. Phys. Lett., 2015, 32(5): 076101
[11] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 076101
[12] LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong. Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 076101
[13] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 076101
[14] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 076101
[15] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 076101
Viewed
Full text


Abstract