Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074702    DOI: 10.1088/0256-307X/29/7/074702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Marangoni Bifurcation Flow in a Microchannel T-Junction and Its Micropumping Effect: A Computational Study
PAN Zhen-Hai1, WANG Hao1**, YANG Zhen2
1Beijing Key Laboratory for Solid Waste Utilization and Management, College of Engineering University, Peking University, Beijing 100871
2Thermal Engineering Department, Tsinghua University, Beijing 100084
Cite this article:   
PAN Zhen-Hai, WANG Hao, YANG Zhen 2012 Chin. Phys. Lett. 29 074702
Download: PDF(1071KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss a bifurcation phenomenon of Marangoni flow in a microchannel T-junction and its novel unidirectional pumping effect. The T-junction is formed by a main channel connected with a liquid reservoir and a side channel outlet to the atmosphere. A volatizing meniscus is formed in the side channel and Marangoni convections are generated due to the non-uniform evaporation on the meniscus. It is found for weak evaporations (Ma < 270) the Marangoni convections are symmetrical. However, for intense evaporations (Ma >270), the initial inward symmetrical Marangoni convection becomes unstable and converted into one single vortex flow. Moreover, the single vortex induces a steady unidirectional flow in the main channel, acting like a pump.
Received: 26 December 2011      Published: 29 July 2012
PACS:  47.20.Dr (Surface-tension-driven instability)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  44.35.+c (Heat flow in multiphase systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/074702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/074702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Zhen-Hai
WANG Hao
YANG Zhen
[1] Xu X and Luo J 2007 Appl. Phys. Lett. 91 124102
[2] Zhu Z Q Liu Q S and Xie J C 2009 Microgravity Sci. Technol. 21 241
[3] Zhao S C, Liu Q S, Henri N T and Bernard B 2010 Chin. Phys. Lett. 27 024707
[4] Buffone C, Sefiane K and Christy J R E 2005 Phys. Fluids 17 052104
[5] Dhavaleswarapu H K, Chamarthy P, Garimella S V and Murthy J Y 2007 Phys. Fluids 19 082103
[6] Wang H, Murthy J Y and SV Garimella 2008 Int. J. Heat Mass Transfer 51 3007
[7] Chamarthy P Dhavaleswarapu H K, Garimella S V, Murthy J Y and Wereley S T 2008 Exp. Fluids 44 431
[8] Wang H, Pan Z and Garimella S V 2011 Int. J. Heat Mass Transfer 54 3015
[9] Pan Z and Wang H 2010 Microfluid. Nanofluid. 9 657
[10] Pan Z, Wang F and Wang H 2011 Microfluid. Nanofluid. 11 327
[11] Gazzola D, Scarselli E F and Guerrieri R 2009 Microfluid. Nanofluid. 7 659
[12] Lombardini M, Bocchi M, Rambelli L, Giulianelli L and Guerrieri R 2010 Lab Chip 10 1204
[13] Iverson B D and Garimella S V 2008 Microfluid. Nanofluid. 5 145
[14] Amirouche F, Zhou Y and Johnson T 2009 Microsys. Technol. 15 647
Related articles from Frontiers Journals
[1] Yan Cen, Chuanshan Tian. Surface Tension and Electrostriction in a Suspended Bridge of Dielectric Liquid[J]. Chin. Phys. Lett., 2018, 35(10): 074702
[2] Jia Wang, Li Duan, Qi Kang. Oscillatory and Chaotic Buoyant-Thermocapillary Convection in the Large-Scale Liquid Bridge[J]. Chin. Phys. Lett., 2017, 34(7): 074702
[3] Di Wu, Li Duan, Qi Kang. Wavenumber Selection by Bénard–Marangoni Convection at High Supercritical Number[J]. Chin. Phys. Lett., 2017, 34(5): 074702
[4] WANG Xin-Wei, SONG Yong-Xin, WANG Hao. Observation of Nucleate Boiling on a Fine Copper Wire with Superhydrophobic Micropatterns[J]. Chin. Phys. Lett., 2012, 29(11): 074702
[5] ZHAO Si-Cheng, LIU Qiu-Sheng**, NGUYEN-THI Henri, BILLIA Bernard . Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2011, 28(2): 074702
[6] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 074702
[7] ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri, BILLIA Bernard. Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane[J]. Chin. Phys. Lett., 2010, 27(2): 074702
[8] LI Lu-Jun, DUAN Li, HU Liang, KANG Qi. Experimental Investigation of Influence of Interfacial Tension on Convection of Two-Layer Immiscible Liquid[J]. Chin. Phys. Lett., 2008, 25(5): 074702
[9] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 074702
[10] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 074702
[11] WU Di, WANG Yi-Zhen, ZHANG Jin-Xiu. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air--Water Interface[J]. Chin. Phys. Lett., 2007, 24(10): 074702
[12] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 074702
[13] LIU Mei, ZHANG Jian-Gang, LV Yao, XIA Shan-Hong. Self-Assembly of Micro-Parts onto Si Substrates at Liquid--Liquid Interface[J]. Chin. Phys. Lett., 2006, 23(1): 074702
[14] WANG Hao, PENG Xiao-Feng, David M. Christopher. Dynamic Bubble Behaviour during Microscale Subcooled Boiling[J]. Chin. Phys. Lett., 2005, 22(11): 074702
[15] ZHOU Gui-Yao, HOU Zhi-Yun, LI Shu-Guang, HOU Lan-Tian. Mathematical Model for Fabrication of Micro-Structure Fibres[J]. Chin. Phys. Lett., 2005, 22(5): 074702
Viewed
Full text


Abstract