Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074701    DOI: 10.1088/0256-307X/29/7/074701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Aspherical Oscillation of Two Interacting Bubbles in an Ultrasound Field
LIANG Jin-Fu, CHEN Wei-Zhong**, SHAO Wei-Hang, QI Shui-Bao
Key Laboratory of Modern Acoustics (Ministry of Education) and Institution of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
LIANG Jin-Fu, CHEN Wei-Zhong, SHAO Wei-Hang et al  2012 Chin. Phys. Lett. 29 074701
Download: PDF(536KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the perturbation theory and Bernoulli equation, equations of aspherical oscillation of two interacting bubbles are derived. This system is then used for the numerical investigation of the deformation of the two bubbles' surfaces in a spherical ultrasound field in liquid. We find that the details of the aspherical oscillation of two bubbles are shown by the analysis of a2(t) and b2(t) that describe the surface deformation of bubbles 1 and 2, respectively.
Received: 16 January 2012      Published: 29 July 2012
PACS:  47.55.dd (Bubble dynamics)  
  47.55.dp (Cavitation and boiling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/074701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/074701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Jin-Fu
CHEN Wei-Zhong
SHAO Wei-Hang
QI Shui-Bao
[1] Weninger K et al 1996 Phys. Rev. E 54 2205
[2] Madrazo A et al 1998 Phys. Rev. Lett. 80 4590
[3] Wu C C and Roberts P H 1998 Phys. Lett. A 250 131
[4] Wang W J et al 2003 J. Acoust. Soc. Am 114 1898
[5] Eru K et al 2011 J. Acoust. Soc. Am. 130 3357
[6] Doinikov A A 2001 Phys. Rev. E 64 026301
[7] Hobson E W 1931 The Theory of Spherical and Ellipsoidal Harmonics (London: Cambridge University Press)
[8] Prosperetti A 1977 Q. Appl. Math. 34 339
[9] Ross D 1983 Mechanics of Under Water Noise (Beijing: Ocean Press) (in Chinese)
[10] Lord R 1917 Philos. Mag. 34 94
[11] Fujikawa S and Takahira H 1986 Acustica 61 188
[12] Zhang P L et al 2009 Acta Phys. Sin. 58 7797 (in Chinese)
[13] Lu Y G et al 2011 Acta Phys. Sin. 60 046202 (in Chinese)
[14] Pu Z Q et al 2005 J. Tsinghua University 11 1450 (in Chinese)
Related articles from Frontiers Journals
[1] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 074701
[2] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 074701
[3] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 074701
[4] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 074701
[5] Yu-Ning Zhang. Natural Frequency of Oscillating Gaseous Bubbles in Ventilated Cavitation[J]. Chin. Phys. Lett., 2017, 34(7): 074701
[6] Yu-Ning Zhang, Zhong-Yu Guo, Yu-Hang Gao, Xiao-Ze Du. Valid Regions of Formulas of Sound Speed in Bubbly Liquids[J]. Chin. Phys. Lett., 2017, 34(6): 074701
[7] LIU Xiao-Bo, ZHANG Jian-Run, LI Pu, LE Van-Quynh. Energy Measurement of Bubble Bursting Based on Vibration Signals[J]. Chin. Phys. Lett., 2012, 29(6): 074701
[8] WANG Han, ZHANG Zhen-Yu, YANG Yong-Ming, ZHANG Hui-Sheng. Generation Mechanism of Liquid Column during the Burst of a Rising Bubble near a Free Surface[J]. Chin. Phys. Lett., 2010, 27(5): 074701
Viewed
Full text


Abstract