Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074501    DOI: 10.1088/0256-307X/29/7/074501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Breakdown of Energy Equipartition in Vibro-Fluidized Granular Media in Micro-Gravity
CHEN Yan-Pei1,2, Pierre Evesque2, HOU Mei-Ying1**
1Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Lab MSSMat, Ecole Centrale de Paris, UMR 8579 CNRS, 92295 Chatenay-Malabry Cedex, France
Cite this article:   
CHEN Yan-Pei, Pierre Evesque, HOU Mei-Ying 2012 Chin. Phys. Lett. 29 074501
Download: PDF(567KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a micro-gravity experimental study of intermediate number density vibro-fluidized inelastic spheres in a rectangular container. Local velocity distributions are investigated, and are found to deviate measurably from a symmetric distribution for the velocity component of the vibrating direction when dividing particles along the vibration direction into several bins. This feature does not exist in the molecular gas. We further study the hydrodynamic profiles of pressures p and temperatures T in positive and negative components, such as py+ and py and Ty+ and Ty, in accordance with the sign of velocity components of the vibrating direction. Along vibration direction, granular media are found to be not only inhomogeneous and anisotropic, but also different greatly in positive and negative components. Energy equipartition breaks down in this case.

Received: 20 June 2012      Published: 29 July 2012
PACS:  45.70.-n (Granular systems)  
  51.30.+i (Thermodynamic properties, equations of state)  
  51.10.+y (Kinetic and transport theory of gases)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/074501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/074501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yan-Pei
Pierre Evesque
HOU Mei-Ying

[1] Grossman E L, Zhou T and Ben-Naim E 1997 Phys. Rev. E 55 4200
[2] Herbst O, Müller P, Otto M and Zippelius A 2004 Phys. Rev. E 70 051313
[3] Sergei E E and Pöchel T 1997 J. Stat. Phys. 86 1385
[4] Olafsen J S and Urbach J S 1999 Phys. Rev. E 60 R2468
[5] Olafsen J S and Urbach J S 1998 Phys. Rev. Lett. 81 4369
[6] Rouyer F and Menon N F 2000 Phys. Rev. Lett. 85 3676
[7] Kudrolli A, Wolpert M and Gollub J P 1997 Phys. Rev. Lett. 78 1383
[8] Losert W, Cooper W D G, Delour J, Kudrolli A and Gollub J P 1999 Chaos 9 682
[9] Hou M, Liu R, Zhai G, Sun Z and Lu K 2008 Micrograv. Sci. Technol. 20 73
[10] Noije T P C and Ernst M H 1998 Granul. Matter 1 57
[11] Brey J J, Ruiz-Montero M J and Cubero D 1996 Phys. Rev. E 54 3664
[12] Huthmann M, Orza J A and Brito R 2000 Granul. Matter 2 189
[13] Evesque P 2002 Poudres Grains 13 20
Evesque P 2002 Poudres Grains 13 40
[14] Evesque P 2005 Poudres Grains 15 1
Evesque P 2005 Poudres Grains 15 18
[15] Liu R, Hou M and Evesque P 2009 Poudres Grains 17 1
[16] Brey J J, Ruiz-Montero M J and Moreno F 2000 Phys. Rev. E 62 5339
[17] Herbst O, Muller P and Zippelius A 2005 Phys. Rev. E 72 041303
[18] Leconte M, Garrabos Y, Palencia F, Lecoutre C, Evesque P and Beysens D 2006 Appl. Phys. Lett. 89 243518
[19] Brilliantov N V and Pöschel T 2004 Kinetic Theory of Granular Gases ( New York: Oxford University)
[20] Brey J J and Cubero D 1998 Phys. Rev. E 57 2019
[21] Barrat A and Trizac E 2002 Phys. Rev. E 66 051303
[22] McNamara S and Luding S 1998 Phys. Rev. E 58 813
[23] van der Meer D and Reimann P 2006 Europhys. Lett. 74 384

Related articles from Frontiers Journals
[1] Can-can Zhou, Hongchuan Shen, Hua Tong, Ning Xu, and Peng Tan. Coupling between Particle Shape and Long-Range Interaction in the High-Density Regime[J]. Chin. Phys. Lett., 2020, 37(8): 074501
[2] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 074501
[3] Lina Yang, Yu-Qi Chen. Dynamical Study of Granular Flow through a Two-Dimensional Hopper[J]. Chin. Phys. Lett., 2019, 36(2): 074501
[4] Adones B. Dengal, Joel T. Maquiling. Dynamics of a Rotating Sphere on Free Surface of Vibrated Granular Materials[J]. Chin. Phys. Lett., 2018, 35(8): 074501
[5] DONG Yuan-Xiang, ZHANG Guo-Hua, SUN Qi-Cheng, ZHAO Xue-Dan, NIU Xiao-Na. Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear[J]. Chin. Phys. Lett., 2015, 32(12): 074501
[6] CHEN Qiong, YANG Xian-Qing**, WANG Zhen-Hui, ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect[J]. Chin. Phys. Lett., 2012, 29(1): 074501
[7] Ram Chand, Abdul Qadir, SHI Qing-Fan**, ZHENG Ning, SUN Gang** . Anomalous Increase of Apparent Mass in a Silo due to Percolation[J]. Chin. Phys. Lett., 2011, 28(9): 074501
[8] SUN Qi-Cheng**, JI Shun-Ying . A Pair Correlation Function Characterizing the Anisotropy of Force Networks[J]. Chin. Phys. Lett., 2011, 28(6): 074501
[9] WEN Zhen-Ying, WANG Shun-Jin, ZHANG Xiu-Ming, LI Lei. Solitary Wave Interactions in Granular Media[J]. Chin. Phys. Lett., 2007, 24(10): 074501
[10] Rui Li, Jie Li, Wei Dai, Mu-Qing Chen. Effect of Thermal Convection on Density Segregation in Binary Granular Gases with Dissipative Lateral Walls[J]. Chin. Phys. Lett., 2017, 34(11): 074501
Viewed
Full text


Abstract