Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074401    DOI: 10.1088/0256-307X/29/7/074401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Enhancement Effect of Patterning Resolution Induced by an Aluminum Thermal Conduction Layer with AgInSbTe as a Laser Thermal Lithography Film
LI Hao1, WANG Rui1, GENG Yong-You1, WU Yi-Qun1,2**, WEI Jing-Song1
1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2Key Lab of Functional Inorganic Material Chemistry (Ministry of Education), Heilongjiang University, Harbin 150080
Cite this article:   
LI Hao, WANG Rui, GENG Yong-You et al  2012 Chin. Phys. Lett. 29 074401
Download: PDF(666KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We employ an aluminum (Al) film as a thermal conduction layer under the laser thermal lithography AgInSbTe phase-change film to improve the patterning resolution in laser thermal lithography. The patterns were fabricated by laser writing and wet-etching. The laser writing was conducted by a setup where the laser wavelength and the numerical aperture of the converging lens were 405 nm and 0.90, respectively. The wet-etching was carried out in a 17wt% ammonium sulfide solution. Experimental results indicate that the patterning resolution enhancement induced by an Al thermal conduction layer is more than 20% compared with that of the samples without an Al thermal conduction layer. The analysis reveals that the resolution-enhancing effect may be due to the changes of heat diffusion directions induced by the Al thermal conduction layer.
Received: 21 February 2012      Published: 29 July 2012
PACS:  44.10.+i (Heat conduction)  
  81.16.Nd (Micro- and nanolithography)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/074401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/074401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hao
WANG Rui
GENG Yong-You
WU Yi-Qun
WEI Jing-Song
[1] Liu C P, Hsu C C, Jeng T R and Chen J P 2009 J. Alloys Compd. 488 190
[2] Usami Y, Watanabe T, Kanazawa Y, Taga K, Kawai H and Ichikawa K 2009 Appl. Phys. Express 2 126502
[3] Chu C H, Shiue C D, Cheng H W, Tseng M L, Chiang H P, Mansuripur M T and Din P 2010 Opt. Express 18 18383
[4] Lee M L, Yuan G Q, Gan C L, Ng L T, Lim C T and Ye K D 2010 Intermetallics 18 2308
[5] Deng C D, Geng Y Y, and Wu Y Q 2011 Appl. Phys. A 104 1091
[6] Mori T 2009 Jpn. J. Appl. Phys. 48 010221
[7] Hosono T and Tokura H 2009 Appl. Surf. Sci. 255 6857
[8] Li H, Geng Y Y and Wu Y Q 2011 P Laser Optoelectronics Prog. 48 19
[9] Shinagawa T, Abe Y, Matsumoto H, Li B C, Murakami K, Okada N, Tadatomo K, Kannaka M and Fujii H 2010 Phys. Status Solidi C 7 2165
[10] Dun A H, Wei J S and Gan F X 2011 Chin. Opt. Lett. 9 082101
[11] Shintani T, Anzai Y, Minemura H, Miyamoto H and Ushiyama J 2004 Appl. Phys. Lett. 85 639
[12] Yamaoka N, Murakami S, Sugawara Y, Ohshima S, Takishita T and Yokogawa F 2010 Jpn. J. Appl. Phys. 49 08KG03
[13] Yusu K, Yamamoto R, Matsumaru M, Nakamura N and Katsuda S 2009 Jpn. J. Appl. Phys. 48 03A068
[14] Put P L M, Urbach H P, Morton R D and Rusch J J 1997 Jpn. J. Appl. Phys. 36 539
[15] Jiao X B, Wei J S and Gan F X 2008 Chin. Phys. Lett. 25 209
[16] Jiao X B, Wei J S, Gan F X and Xiao M F 2009 Appl. Phys. A 94 27
[17] Holtslag A H M 1989 J. Appl. Phys. 66 1530
Related articles from Frontiers Journals
[1] Lan Dong, Bohai Liu, Yuanyuan Wang, and Xiangfan Xu. Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation[J]. Chin. Phys. Lett., 2022, 39(12): 074401
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 074401
[3] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 074401
[4] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 074401
[5] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 074401
[6] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 074401
[7] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 074401
[8] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 074401
[9] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 074401
[10] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 074401
[11] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 074401
[12] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 074401
[13] Le-Min Zhang, Bin-Bin Jiao, Shi-Chang Yun, Yan-Mei Kong, Chih-Wei Ku, Da-Peng Chen. A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks[J]. Chin. Phys. Lett., 2017, 34(2): 074401
[14] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 074401
[15] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 074401
Viewed
Full text


Abstract