Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074215    DOI: 10.1088/0256-307X/29/7/074215
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Power High-Temperature Continuous-Wave Operation of Quantum Cascade Laser at λ∼4.6 µm without Lateral Regrowth
LIANG Ping, LIU Feng-Qi**, ZHANG Jin-Chuan, WANG Li-Jun, LIU Jun-Qi, WANG Zhan-Guo
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
LIANG Ping, LIU Feng-Qi**, ZHANG Jin-Chuan et al  2012 Chin. Phys. Lett. 29 074215
Download: PDF(571KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-power quantum cascade lasers (λ=4.6 µm ) working in continuous wave (cw) up to 90°C are presented. The material was grown by solid-source molecular beam epitaxy and processed into narrow conventional ridge geometry without lateral regrowth. High cw output power of 850 mW at 10°C and more than 200 mW at 90°C were obtained with threshold current densities of 1.34 and 2.47 kA/cm2, respectively, for a high-reflectivity-coated 12-µm -wide and 3-mm-long laser.

Received: 04 May 2012      Published: 29 July 2012
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Pk (Continuous operation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/074215       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/074215
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Ping
LIU Feng-Qi**
ZHANG Jin-Chuan
WANG Li-Jun
LIU Jun-Qi
WANG Zhan-Guo
[1] Kosterev A, Wysocki G, Bakhirkin Y, So S, Lewicki R, Fraser M, Tittel F and Curl R 2008 Appl. Phys. B 90 165
[2] Nelson D D, Shorter J H, McManus J B and Zahniser M S 2002 Appl. Phys. B 75 343
[3] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[4] Bai Y, Slivken S, Kuboya S, Darvish S and Razeghi M 2010 Nature Photon. 4 92
[5] Bai Y, Bandyopadhyay N, Tsao S, Slivken S and Razeghi M 2011 Appl. Phys. Lett. 98 181102
[6] Lyakh A, Maulini R, Tsekoun A, Go R, Pflugl C, Diehl L and Wang Q J 2009 Appl. Phys. Lett. 95 141113
[7] Xie F, Caneau C G, LeBlanc H P, Visovsky N J, Coleman S, Hughes L C and Zah C 2009 Appl. Phys. Lett. 95 91110
[8] Evans A, Darvish S, Slivken S, Nguyen J, Bai Y and Razeghi M 2007 Appl. Phys. Lett. 91 071101
[9] Zhang J C, Liu F Q, Tan S, Yao D Y, Wang L J, Li L, Liu J Q and Wang Z G 2012 Appl. Phys. Lett. 100 112105
[10] Zhang J C, Wang L J, Liu W F, Liu F Q, Wen Y, Liu J Q, Li L and Wang Z G 2011 Chin. Phys. Lett. 28 074203
[11] Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J and Wang Z G 2010 Chin. Phys. Let. 27 104205
[12] Yu J S, Evans A, David J, Doris L, Slivken S and M Razeghi 2003 Appl. Phys. Lett. 83 5136
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 074215
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 074215
[3] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 074215
[4] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 074215
[5] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 074215
[6] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 074215
[7] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 074215
[8] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 074215
[9] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 074215
[10] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 074215
[11] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 074215
[12] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 074215
[13] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 074215
[14] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 074215
[15] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 074215
Viewed
Full text


Abstract