GENERAL |
|
|
|
|
Enhanced Gas Sensing Properties of Aligned Porous SnO2 Nanofibers |
ZHAO Yan, HE Xiu-Li**, LI Jian-Ping, JIA Jian, GAO Xiao-Guang |
State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
ZHAO Yan, HE Xiu-Li, LI Jian-Ping et al 2012 Chin. Phys. Lett. 29 070701 |
|
|
Abstract Aligned porous SnO2 nanofibers are obtained by electrospinning with the collector of parallel wedge-shaped electrodes and then by oxygen plasma treatment and annealing. The morphology and crystal structure of the fibers are analyzed by scanning electron microscopy and x-ray diffraction, and the effects of the morphology and alignment on ethanol sensing properties of the fibers are investigated. The results show that the porous SnO2 fibers with an average diameter of tens of nanometers can be deposited orderly on the micro-hotplate with the auxiliary electrodes. The aligned porous fibers exhibit higher sensitivity and faster response compared with randomly oriented ones at the operating temperature of 300°C.
|
|
Received: 31 December 2011
Published: 29 July 2012
|
|
PACS: |
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
|
|
|
[1] Salehi A 2003 Sensor. Actuat. B 96 88 [2] Dharmaraj N, Kim C H, Kim K W, Kim H Y and Suh E K 2006 Spectrochim. Acta A 64 136 [3] Ying P Z, Ni Z F, Xiu W J, Jia L J and Luo Y 2006 Chin. Phys. Lett. 23 1026 [4] Yang M R, Chu S Y and Chang R C 2007 Sensor. Actuat. B 122 269 [5] Luo S H, Fan J Y, Liu W L, Zhang M, Song Z T, Lin C L, Wu X L and Chu P K 2006 Nanotechnology 17 1695 [6] Hu J Q, Bando Y and Golberg D 2003 Chem. Phys. Lett. 372 758 [7] Gibson P, Schreuder H and Rivin D 2001 Colloid Surf. A 188 469 [8] Kidoaki S, Kwon K and Matsuda T 2005 Biomaterials 26 37 [9] Buchko C J, Chen L C, Shen Y and Martin D C 1999 Polym. 40 397 [10] Wnek G E, Carr M E, Simpson D G and Bowlin G L 2003 Nano Lett. 3 213 [11] Liu L, Zhang T, Li S C, Wang L Y, Fan H T and Li W 2009 Chin. Phys. Lett. 26 100702 [12] Cho N G, Yang D J, Jin M J, Kim H G, Tuller H L and Kim I D 2011 Sensor. Actuat. B 160 1468 [13] Zhang Y, He X L, Li J P, Miao Z J and Huang F 2008 Sensor. Actuat. B 132 67 [14] Katta P, Alessandro M, Ramsier R D and Chase G C 2004 Nano Lett. 4 2215 [15] Teo W E, Kotaki M, Mo X M and Ramakrishna S 2005 Nanotechnology 16 918 [16] Sundaray B, Subramanian V, Natarajan T S, Xiang R Z, Chang C C and Fann W S 2004 Appl. Phys. Lett. 84 1222 [17] Theron A, Zussman E and Yarin A Y 2001 Nanotechnology 12 384 [18] Dalton P D, Klee D and Moller M 2005 Polymers 46 611 [19] Li D, Wang Y L and Xia Y N 2004 Adv. Mater. 16 361 [20] Tan J S, Long Y Z and Li M M 2008 Chin. Phys. Lett. 25 3067 [21] Teo W E and Ramakrishna S 2005 Nanotechnology 16 1878 [22] Dersch R, Liu T Q, Schaper A K, Greiner A and Wendorff J H 2003 J. Polym. Sci. Part. A 41 545 [23] Choi S H, Ankonina G, Youn D Y, Oh S G, Hong J M, Rothschild A and Kim I D 2009 ACS Nano 3 2623 [24] He X L, Zhao Y, Li J P, Gao X G and Jia J 2011 Sensor Lett. 9 294 [25] Zhang Y, Li J P, An G M and He X L 2010 Sensor. Actuat. B 144 43 [26] Gong J W, Chen Q F, Fei W F and Seal S 2004 Sensor. Actuat. B 102 117 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|