Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 070501    DOI: 10.1088/0256-307X/29/7/070501
GENERAL |
Wavelet Phase Synchronization of Fractional-Order Chaotic Systems
CHEN Feng1, XIA Lei2, LI Chun-Guang3**
1School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054
2Xi'an Institute of Electromechanical Information Technology, Xi'an 710065
3 Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027
Cite this article:   
CHEN Feng, XIA Lei, LI Chun-Guang 2012 Chin. Phys. Lett. 29 070501
Download: PDF(711KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nowadays, fractional-order systems are attracting more and more attention. There are several ways available for analyzing fractional-order systems, among which wavelet transform is an efficient method for analyzing system dynamics in both time and frequency domains. We investigate the wavelet phase synchronization employing wavelet transform to explore the phase synchronization behaviors of fractional-order chaotic oscillators. We analyze in detail the synchronization behaviors with changes to the coupling strength, the central frequency Ω0, and the time scale of the wavelet.
Received: 21 March 2012      Published: 29 July 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/070501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Feng
XIA Lei
LI Chun-Guang
[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[2] Bagley R L and Calico R A 1991 J. Guid. Contr. Dyn. 14 304
Koeller R C 1984 J. Appl. Mech. 51 299
Koeller R C 1986 Acta Mech. 58 251
[3] Sun H H, Abdelwahad A A and Onaral B 1984 IEEE Trans. Autom. Control 29 441
[4] Ichise M, Nagayanagi Y and Kojima T 1971 J. Electroanal. Chem. 33 253
[5] Heaviside O 1971 Electromagnetic Theory (New York: Chelsea)
[6] Li C G and Chen G 2004 Physica A 341 55
[7] Hartley T T, Lorenzo C F and Qammer H K 1995 IEEE Trans. CAS-I 42 485
[8] Arena P, Caponetto R, Fortuna L and Porto D 1997 Proceedings of the ECCTD (Budapest) 1259
[9] Ahmad W, El-Khazali R, El-Wakil A 2001 Electron. Lett. 37 1110
[10] Ahmad W M and Sprott J C 2003 Chaos Solitons Fractals 16 339
[11] Ahmad W M and Harb W M 2003 Chaos Solitons Fractals 18 693
[12] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[13] Arena P, Caponetto R, Fortuna L and Porto D 1998 Int. J. Bifur. Chaos 7 1527
Arena P, Fortuna L, Porto D 2000 Phys. Rev. E 61 776
[14] Li C G and Chen G 2004 Chaos Solitons Fractals 22 549
[15] Zhou P and Chen Y M 2009 Chin. Phys. Lett. 26 120503
Yang Y Q and Chen Y 2009 Chin. Phys. Lett. 26 100501
Zhong Q S, Bao J F, Yu Y B and Liao X F 2008 Chin. Phys. Lett. 25 2812
Wang S and Yu G Y 2012 Chin. Phys. Lett. 29 020505
[16] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[17] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[18] Zhang J B, Liu Z R and Li Y 2007 Chin. Phys. Lett. 24 1494
Guo R W 2011 Chin. Phys. Lett. 28 040205
Lee Tae H and Park Ju H 2009 Chin. Phys. Lett. 26 090507
Miao Q Y, Fang J A, Tang Y and Dong A H 2009 Chin. Phys. Lett. 26 050501
Al-sawalha M M and Noorani M S M 2011 Chin. Phys. Lett. 28 110507
Zheng Z G, Hu G and Hu Bambi 2001 Chin. Phys. Lett. 18 874
Zhan M, Hu G and Wang X G 2000 Chin. Phys. Lett. 17 332
[19] Rosenblum M, Pikovsky A and Kurtz J 1996 Phys. Rev. Lett. 76 1804
[20] Pikovsky A, Rosenlum M, Osipov G and Kurtz J 1997 Physica D 104 219
[21] Rosenblum M, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[22] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[23] Hramov A E and Koronovskii A A 2004 JETP Lett. 79 316
[24] Hramov A E and Koronovskii A A 2005 Physica D 206 252
[25] Postnikov E B 2007 J. Exp. Theor. Phys. 105 652
[26] Postnikov E B 2009 Phys. Rev. E 80 057201
[27] Li C G, Liao X F and Yu J 2003 Phys. Rev. E 68 067203
[28] Deng W H and Li C P 2005 J. Phys. Soc. Jpn. 74 1645
Lu J G 2005 Chaos Solitons Fractals 26 1125
Gao X and Yu J B 2005 Chaos Solitons Fractals 26 141
Lu J G 2006 Chaos Solitons Fractals 27 519
Zhang H, Li C G and Chen G 2005 Int. J. Mod. Phys. C 16 815
Deng W H and Li C P 2005 Physica A 353 61
[29] Li C G 2007 Int. J. Mod. Phys. B 21 5159
[30] Li C G 2006 Prog. Theor. Phys. 115 661
[31] Charef A, Sun H H, Tsao Y Y and Onaral B 1992 IEEE Trans. Autom. Control 37 1465
[32] Grossman A and Morlet J 1984 SIAM J. Math. Anal. 15 723
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 070501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 070501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 070501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 070501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 070501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 070501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 070501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 070501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 070501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 070501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 070501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 070501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 070501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 070501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 070501
Viewed
Full text


Abstract