Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 070306    DOI: 10.1088/0256-307X/29/7/070306
GENERAL |
Testing Quantum Entanglement with Local Measurement
XIE Qing1,2, WU Xian-Xin2, DING Xiang-Mao3, YANG Wen-Li4, YUE Rui-Hong1, FAN Heng2**
1Faculty of Science, Ningbo University, Ningbo 315211
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Institute of Applied Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190
4Institute of Modern Physics, Northwest University, Xi'an 710069
Cite this article:   
XIE Qing, WU Xian-Xin, DING Xiang-Mao et al  2012 Chin. Phys. Lett. 29 070306
Download: PDF(481KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose to detect quantum entanglement by a condition of local measurements. We find that this condition can efficiently detect the pure entangled states for both discrete and continuous variable systems. It does not depend on interference of decoherence from noise and detection loss in some systems, which allows a loophole-free test in real experiments. In particular, it is a necessary condition for the violation of some generalized Bell inequalities.
Received: 19 April 2012      Published: 29 July 2012
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/070306       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/070306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Qing
WU Xian-Xin
DING Xiang-Mao
YANG Wen-Li
YUE Rui-Hong
FAN Heng
[1] Einstein A et al 1935 Phys. Rev. 47 777
[2] Bell J S 1964 Physics (N. Y.) 1 195
[3] Bell J S 1966 Rev. Mod. Phys. 38 447
[4] Clauser J F et al 1969 Phys. Rev. Lett. 23 880
[5] Mermin N D 1990 Phys. Rev. Lett. 65 1838
Mermin N D 1990 Phys. Rev. Lett. 65 3373
Mermin N D 1990 Rev. Mod. Phys. 65 803
[6] Collins D et al 2002 Phys. Rev. Lett. 88 040404
[7] ?ukowski M and Brukner ? 2002 Phys. Rev. Lett. 88 210401
[8] Son W et al 2006 Phys. Rev. Lett. 96 060406
[9] Aspect A et al 1982 Phys. Rev. Lett. 49 91
[10] Weihs G et al 1998 Phys. Rev. Lett. 81 5039
[11] Rowe M A et al 2001 Nature 409 791
[12] Pironio S et al 2010 Nature 461 1021
[13] Kochen S and Specker E P 1967 J. Math. Mech. 17 59
[14] Genovese M 2005 Phys. Rep. 413 319
[15] Cavalcanti E G et al 2007 Phys. Rev. Lett. 99 210405
[16] Gisin N 1991 Phys. Lett. A 154 201
Gisin N and Peres A 1992 Phys. Lett. A 162 15
[17] Chen J L et al 2004 Phys. Rev. Lett. 93 140407
[18] Chen Z B et al 2002 Phys. Rev. Lett. 88 040406
[19] Werner R F 1989 Phys. Rev. A 40 4277
[20] He Q Y et al 2009 Phys. Rev. Lett. 103 180402
[21] Ji S W et al 2010 Phys. Rev. Lett. 105 170404
[22] You J Q and Nori F 2011 Nature 474 589
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 070306
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070306
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 070306
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 070306
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 070306
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 070306
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 070306
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 070306
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 070306
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 070306
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 070306
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 070306
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 070306
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 070306
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 070306
Viewed
Full text


Abstract