Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 070302    DOI: 10.1088/0256-307X/29/7/070302
GENERAL |
Discontinuity of the Measurement-Induced Nonlocality Evolution
XU Guo-Fu, TONG Dian-Min**
Department of Physics, Shandong University, Jinan 250100
Cite this article:   
XU Guo-Fu, TONG Dian-Min 2012 Chin. Phys. Lett. 29 070302
Download: PDF(498KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel resource, i.e. measurement-induced nonlocality, was proposed by Luo and Fu [Phys. Rev. Lett. 106 (2011) 120401]. It can directly reflect the usefulness of quantum nonlocality in quantum protocols. We investigate the dynamics of measurement-induced nonlocality by exactly solving a model which consists of two independent atoms each subject to a zero-temperature muti-mode cavity. We find that the dynamics of measurement-induced nonlocality is discontinuity under some special conditions. The reason for this phenomenon is the constraint of the von Neumann measurements which do not disturb the reduced density operator. We also find the sudden death phenomenon and the sudden birth phenomenon.
Received: 16 December 2011      Published: 29 July 2012
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/070302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Guo-Fu
TONG Dian-Min
[1] Bergmann P G, Sabbata V de and Goldberg J N 2000 Classical and Quantum Nonlocality (Singapore: World Scientific)
[2] Schr?dinger E 1936 Proc. Cambridge Philos. Soc. 32 446
[3] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[4] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[5] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A1996 Phys. Rev. Lett. 76 4656
[6] Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
[7] Bell J S 1964 Physics (N. Y.) 1 195
[8] Werner R F and Wolf M M 2001 Quantum Inf. Comput. 1 1
[9] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[10] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[11] Augusiak R, Cavalcanti D, Prettico G and Acin A2010 Phys. Rev. Lett. 104 230401
[12] Li G X, Huang G M and Gao Y J 2003 Chin. Phys. Lett. 20 223
[13] Zhou Q P, Fang M F and Liu X J 2005 Chin. Phys. Lett. 22 12
[14] Xiang Y 2010 Chin. Phys. Lett. 27 120301
[15] Qiu L 2011 Chin. Phys. Lett. 28 030301
[16] Luo S L and Fu S S 2011 Phys. Rev. Lett. 106 120401
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 070302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 070302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 070302
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 070302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 070302
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 070302
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 070302
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 070302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 070302
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 070302
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 070302
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 070302
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 070302
Viewed
Full text


Abstract