Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 064301    DOI: 10.1088/0256-307X/29/6/064301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Flow-Noise Calculation Using the Mutual Coupling Between Vulcanized Rubber and the Flow Around in Water
LI Xue-Gang, YANG Kun-De**, MA Yuan-Liang
College of Marine, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
LI Xue-Gang, YANG Kun-De, MA Yuan-Liang 2012 Chin. Phys. Lett. 29 064301
Download: PDF(2541KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A vulcanized rubber layer is usually used on the head of an axisymmetric body to keep it streamlined and watertight. The elastic boundary condition is considered when the flow noise of an axisymmetric body is calculated, and we employ the mutual coupling method between the vulcanized rubber layer and the flow around to solve the flow-noise field for an axisymmetric body in water. The results show that the deformation of the vulcanized rubber layer is reduced with the increase in Young's modulus. The Young's modulus of the rubber material should be large enough to keep it streamlined, and the noise power levels in the peak of the axisymmetric body are smaller than the other positions, which provides us with important theoretical support for laying acoustic arrays on the head of the body.
Received: 30 September 2011      Published: 31 May 2012
PACS:  43.30.Nb (Noise in water; generation mechanisms and characteristics of the field)  
  43.30.Lz (Underwater applications of nonlinear acoustics; explosions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/064301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/064301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xue-Gang
YANG Kun-De
MA Yuan-Liang
[1] Mak C M and Wu J 2009 J. Acoust. Soc. Am. 125 3756
[2] Mak C M and Au W M 2009 Appl. Acoust. 70 11
[3] Han N and Mak C M 2008 Appl. Acoust. 69 566
[4] Lighthill M J 1952 Proc R. Soc. London A 211 564
[5] Lighthill M J 1954 Proc R. Soc. London A 222 1
[6] Haddle G P and Skudrzk E J 1969 J. Acoust. Soc. Am. 46 130
[7] Lauchle G C 1977 J. Acoust. Soc. Am. 61 694
[8] Lauchle G C 1980 J. Acoust. Soc. Am. 67 158
[9] Lauchle G C 1981 J. Acoust. Soc. Am. 69 665
[10] Li X G, Yang K D and Wang Y 2011 Chin. Phys. B 20 064302
[11] Li X G, Yang K D and Wang Y 2011 Chin. Phys. B 20 074301
[12] Arakeri V H, Satyanarayan S G, Mani K and Sharma S D 1991 J. Sound. Vib. 146 449
[13] Li J L, Li C X 2009 Master Fluent 6. 3 for Flow Field Analyses (Beijing: Chemical Industry Press) p 150 (in Chinese)
[14] Ffowcs Williams J E, Hawking D L 1969 Phil. Trans. Roy. Soc. A 264 321
[15] Dang S S, Xu Y and Zhang H S 2010 Ansys 12. 0 Multi-Physical Field Coupled Finite Element Analysis (Beijing: China Machine Press) p 343 (in Chinese)
Related articles from Frontiers Journals
[1] Ji-Xing Qin, Boris Katsnelson, Oleg Godin, Zheng-Lin Li. Geoacoustic Inversion Using Time Reversal of Ocean Noise[J]. Chin. Phys. Lett., 2017, 34(9): 064301
[2] WANG Jing-Yan, LI Feng-Hua. Preliminary Study on Underwater Ambient Noise Generated by Typhoons[J]. Chin. Phys. Lett., 2015, 32(4): 064301
[3] HE Li, LI Zheng-Lin, ZHANG Ren-He, PENG Zhao-Hui. Horizontal Correlation of Ambient Noise near a Sea Route[J]. Chin. Phys. Lett., 2008, 25(2): 064301
Viewed
Full text


Abstract