Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 064302    DOI: 10.1088/0256-307X/29/6/064302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Broadband Attenuation in Phononic Beams Induced by Periodic Arrays of Feedback Shunted Piezoelectric Patches
WANG Jian-Wei, WANG Gang**, CHEN Sheng-Bing, WEN Ji-Hong
Institute of Mechatronical Engineering, and Key Laboratory of Photonic and Phononic Crystal (Ministry of Education), National University of Defense Technology, Changsha 410073
Cite this article:   
WANG Jian-Wei, WANG Gang, CHEN Sheng-Bing et al  2012 Chin. Phys. Lett. 29 064302
Download: PDF(903KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of periodic arrays of feedback shunted piezoelectric patches in the flexural wave attenuation of phononic beams is analyzed theoretically and experimentally. A numerical model based on transfer matrix methodology is developed to predict the transmission of vibration and the frequency ranges of the band gaps. Broadband vibration attenuations are observed in or out of the band gaps. The proposed concept is validated on a suspended epoxy beam driven by a shaker, and the experimental results are presented in terms of the vibration transmissions recorded using two accelerometers placed on both sides of the beam.
Received: 16 December 2011      Published: 31 May 2012
PACS:  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  02.60.-x (Numerical approximation and analysis)  
  77.65.-g  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/064302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/064302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jian-Wei
WANG Gang
CHEN Sheng-Bing
WEN Ji-Hong
[1] Kushwaha M S, Halevi P, Dobrzynski L and Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022
[2] Mead D J 1996 J. Sound Vib. 190 495
[3] Hagood N W and Von Flotow A 1991 J. Sound Vib. 146 243
[4] Hollkamp J J and Starchville T F Jr 1994 J. Intell. Mater. Syst. Struct. 5 559
[5] Behrens S, Fleming A J and Moheimani S O R 2003 Smart Mater. Struct. 12 18
[6] Wu S Y 1998 Proc. SPIE 3327 159
[7] Park C H and Baz A 2005 J. Vib. Control 11 331
[8] Chen S B, Wen J H, Yu D L, Wang G and Wen X S 2011 Chin. Phys. B 20 014301
[9] Neubauer M, Oleskiewicz R, Popp K and Krzyzynski T 2006 J. Sound Vib. 298 84
[10] de Marneffe B and Preumont A 2008 Smart Mater. Struct. 17 035015
[11] Ruzzene M and Baz A 2001 Smart Mater. Struct. 10 893
[12] Thorp O, Ruzzene M and Baz A 2001 Smart Mater. Struct. 10 979
[13] Thorp O, Ruzzene M and Baz A 2005 Smart Mater. Struct. 14 594
[14] Singh A, Pines D J and Baz A 2004 Smart Mater. Struct. 13 698
[15] Chen S B, Han X Y, Yu D L and Wen J H 2010 Acta Phys. Sin. 59 387
[16] Wang G, Chen S and Wen J 2011 Smart Mater. Struct. 20 015026
[17] Chen S B, Wen J H, Wang G, Han X Y and Wen X S 2011 Chin. Phys. Lett. 28 094301
[18] Spadoni A, Ruzzene M and Cunefare K A 2009 J. Intell. Mater. Syst. Struct. 20 979
[19] Casadei F, Ruzzene M, Dozio L and Cunefare K A 2010 Smart Mater. Struct. 19 015002
[20] Wang G, Wang J and Chen S 2011 Smart Mater. Struct. 20 125019
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 064302
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 064302
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 064302
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 064302
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 064302
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 064302
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 064302
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 064302
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 064302
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 064302
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 064302
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 064302
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 064302
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 064302
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 064302
Viewed
Full text


Abstract