Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 061201    DOI: 10.1088/0256-307X/29/6/061201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
An Improved Quasi-particle Model Framework for Quark-Gluon Plasma from the Path Integral Formalism
CAO Jing1, ZHAO A-Meng1, SUN Wei-Min1,2, ZONG Hong-Shi1,2**
1Department of Physics, Nanjing University, Nanjing 210093
2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
Cite this article:   
CAO Jing, ZHAO A-Meng, SUN Wei-Min et al  2012 Chin. Phys. Lett. 29 061201
Download: PDF(436KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An improved framework for the quasi-particle model is presented. Unlike the previous approach of establishing the quasi-particle model, we introduce a classical background field (it is allowed to depend on temperature) to deal with the infinity of thermal vacuum energy which exists in previous quasi-particle models. After taking into account the effect of this classical background field, the partition function of the quasi-particle system can be well defined. Based on this and following the standard ensemble theory, we construct a thermodynamically consistent quasi-particle model without the need to reformulate the statistical mechanics or the thermodynamic consistency relation. It is shown that our method is general and can be generalized to the case in which the effective mass depends not only on the temperature but also on the chemical potential.
Keywords: 12.38.Mh      51.30.+i      52.25.Kn     
Received: 29 February 2012      Published: 31 May 2012
PACS:  12.38.Mh (Quark-gluon plasma)  
  51.30.+i (Thermodynamic properties, equations of state)  
  52.25.Kn (Thermodynamics of plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/061201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/061201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Jing
ZHAO A-Meng
SUN Wei-Min
ZONG Hong-Shi
[1] Borgs C and Seiler E 1983 Commun. Math. Phys. 91 195
[2] Tomboulis E T and Yaffe L G 1984 Phys. Rev. Lett 52 2115
[3] Alford M G, Rajagopal K and Wilczek F 1998 Phys. Lett. B 422 247
Alford M G, Rajagopal K and Wilczek F 1999 Nucl. Phys. B 537 443
[4] Ploskon M et al (CERES Collaboration) 1999 Nucl. Phys. A 661 673c
Ploskon M et al (CERES Collaboration) 2002 Nucl. Phys. A 698 460
[5] Goloviznin V and Satz H 1993 Z. Phys. C 57 671
[6] Peshier A, K?mpfer B, Pavlenko O P and Soff G 1994 Phys. Lett. B 337 235
[7] Gorenstein M I and Yang S N 1995 Phys. Rev. D 52 5206
[8] Peshier A, K?mpfer B and Soff G 2000 Phys. Rev. C 61 045203
[9] Levai P and Heinz U 1998 Phys. Rev. C 57 1879
[10] Schneider R A and Weise W 2001 Phys. Rev. C 64 055201
[11] Szabó K K and Tóth A I 2003 J. High Energy Phys. 06 008
[12] Thaler M A, Schneider R A and Weise W 2004 Phys. Rev. C 69 035210
[13] Bluhm M, K?mpfer B and Soff G 2005 Phys. Lett. B 620 131
Bluhm M and K?mpfer B 2008 Phys. Rev. D 77 034004
[14] Bannur V M 2007 Eur. Phys. J. C 50 629
Bannur V M 2007 Phys. Lett. B 647 271
Bannur V M 2007 Phys. Rev. C 75 044905
Bannur V M 2007 J. High Energy Phys. 09 046
Bannur V M 2008 Phys. Rev. C 78 045206
[15] Kapusta J I 1989 Finite-Temperature Field Theory (Cambridge: Cambridge University)
[16] Bellac M l 1996 Thermal Field Theory (Cambridge: Cambridge University)
[17] Walecka J D 1995 Theoretical Nuclear and Subnuclear Physics (Oxford: Oxford University)
Related articles from Frontiers Journals
[1] JIANG Yu,GONG Hao,SUN Wei-Min,ZONG Hong-Shi,**. Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass[J]. Chin. Phys. Lett., 2012, 29(4): 061201
[2] QU Zhen, LIU Yun-Peng, ZHUANG Peng-Fei. Dissociation Temperature of Strictly Confined Charmonium States[J]. Chin. Phys. Lett., 2012, 29(3): 061201
[3] CAO Jing, ZHAO A-Meng, LUO Liu-Jun, SUN Wei-Min, ZONG Hong-Shi,. Calculation of Quark-Number Susceptibility at Finite Chemical Potential and Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 061201
[4] WU Liang-Kai. Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential[J]. Chin. Phys. Lett., 2010, 27(2): 061201
[5] FU Yong-Ping, LI Yun-De . Intermediate Mass Dileptons from the Passage of Jets and High Energy Photons through Quark-Gluon Plasma[J]. Chin. Phys. Lett., 2010, 27(10): 061201
[6] GU Yun-Jun, CHEN Qi-Feng, CAI Ling-Cang, CHEN Zhi-Yun, ZHENG Jun. Temperature Measurements of Condensed Gaseous Hydrogen-Helium Mixtures under Multi-Shock Compression[J]. Chin. Phys. Lett., 2009, 26(8): 061201
[7] XIN Ke-Feng, ZHANG Song, MA Yu-Gang, CAI Xiang-Zhou, MA Guo-Liang, ZHONG Chen. Properties of Dihadron Correlations for p+p Collisions at √sNN= 200 GeV[J]. Chin. Phys. Lett., 2009, 26(6): 061201
[8] SHI Xing-Hua, MA Yu-Gang, CAI Xiang-Zhou, CHEN Jin-Hui, MA Guo-Liang, ZHONG Chen. Strangeness by Thermal Model Simulation at RHIC[J]. Chin. Phys. Lett., 2009, 26(6): 061201
[9] FU Yong-Ping, LI Yun-De. Jet-Photon Production at RHIC and LHC[J]. Chin. Phys. Lett., 2009, 26(11): 061201
[10] LONG Jia-Li, HE Ze-Jun, , MA Yu-Gang, GUAN Na-Na. Photons from Quark and Hadron Phases in Au + Au Collisions[J]. Chin. Phys. Lett., 2008, 25(9): 061201
[11] ZHOU Shi-Qi. Phase Behaviour of Purely Repulsive Systems: Violation of Traditional van der Waals Picture[J]. Chin. Phys. Lett., 2008, 25(6): 061201
[12] ZENG Zhao-Yi, LIU Zhong-Li, CHEN Xiang-Rong, CAI Ling-Cang, JINGFu-Qian,. Structures and Equation of State of ε-Fe under High Pressure[J]. Chin. Phys. Lett., 2008, 25(5): 061201
[13] GUAN Na-Na, HE Ze-Jun, LONG Jia-Li, CAI Xiang-Zhou. Dileptons from a Chemically Equilibrating Quark--Gluon Plasma at Finite Baryon Density[J]. Chin. Phys. Lett., 2008, 25(11): 061201
[14] XIANG Wen-Chang, WAN Ren-Zhuo, ZHOU Dai-Cui. Surface Emission of Quark Gluon Plasma at RHIC and LHC[J]. Chin. Phys. Lett., 2008, 25(11): 061201
[15] LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(5): 061201
Viewed
Full text


Abstract