NUCLEAR PHYSICS |
|
|
|
|
The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48Ca and 58,64Ni Projectile Fragmentation |
MA Chun-Wang**, PU Jie, WANG Shan-Shan, WEI Hui-Ling |
Department of Physics, Henan Normal University, Xinxiang 453007 |
|
Cite this article: |
MA Chun-Wang, PU Jie, WANG Shan-Shan et al 2012 Chin. Phys. Lett. 29 062101 |
|
|
Abstract In the framework of a modified Fisher model, using the isobaric yield ratio method, we investigate the fragments produced in the 140 A MeV 40,48Ca+9Be and 58,64Ni+9Be projectile fragmentation reactions. Using different approximation methods, asym/T (the ratio of symmetry?energy coefficient to temperature) of symmetric and neutron-rich fragments are extracted. It is found that asym/T of fragments depend on the reference nucleus and the neutron excess of fragments. The asym/T of the isobar decreases when the neutron?excess of the isobar increases, while for a fragment with the same neutron-excess, asym/T increases as the mass of the fragment increases but saturate when the mass of the fragment becomes larger.
|
|
Received: 09 January 2012
Published: 31 May 2012
|
|
PACS: |
21.65.Cd
|
(Asymmetric matter, neutron matter)
|
|
21.65.Ef
|
(Symmetry energy)
|
|
21.65.Mn
|
(Equations of state of nuclear matter)
|
|
|
|
|
[1] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113 [2] Chen L W, Ko C M, Li B A and Yong G C 2007 Front. Phys. Chin. 2 327 [3] Xu J, Chen L W, Li B A and Ma H R 2008 Phys. Rev. C 77 014302 [4] Yong G C 2010 Phys. Rev. C 81 054603 [5] Kowalski S, Natowitz J B, Shlomo S, Wada R, Hagel K, Wang J, Materna T, Chen Z, Ma Y G, Qin L, Botvina A S, Fabris D, Lunardon M, Moretto S, Nebbia G, Pesente S, Rizzi V, Viesti G, Cinausero M, Prete G, Keutgen T, Masri Y E, Majka Z and Ono A 2007 Phys. Rev. C 75 014601 [6] Li B A 2003 Phys. Rev. C 67 017601 [7] Ma Y G, Su Q M, Shen W Q, Han D D, Wang J S, Cai X Z, Fang D Q and Zhang H Y 1999 Phys. Rev. C 60 024607 [8] Bonasera A, Chen Z, Wada R, Hagel K, Natowitz J, Sahu P, Qin L, Kowalski S, Keutgen T, Materna T and Nakagawa T 2008 Phys. Rev. Lett. 101 122702 [9] Gupta S D, Mekjian A Z and Tsang M B 2002 Adv. Nucl. Phys. 26 89 [10] Goodman A L, Kapusta J I and Mekjian A Z 1984 Phys. Rev. C 30 851 [11] Ma Y G, Natowitz J B, Wada R, Hagel K, Wang J, Keutgen T, Majka Z, Murray M, Qin L, Smith P, Alfaro R, Cibor J, Cinausero M, Masri Y E, Fabris D, Fioretto E, Keksis A, Lunardon M, Makeev A, Marie N, Martin E, Martinez-Davalos A, Menchaca-Rocha A, Nebbia G, Prete G, Rizzi V, Ruangma A, Shetty D V, Souliotis G, Stasze P, Veselsky M, Viesti G, Winchester E M and Yennello S J 2005 Phys. Rev. C 71 054606 [12] Xu H S, Tsang M B, Liu T X, Liu X D, Lynch W G, Tan W P, Molen A, Verde G, Wagner A, Xi H F, Gelbke C K, Beaulieu L, Davin B, Larochelle Y, Lefort T, Souza R T, Yanez R, Viola V E, Charity R J and Sobotka L G 2000 Phys. Rev. Lett. 85 716 [13] Tsang M B, Bougault R, Charity R, Durand D, Friedman W A, Gulminelli F, F鑦re A L, Raduta A H, Raduta A R, Souza S, Trautmann W and Wada R 2006 Eur. Phys. J. A 30 129 [14] Wada R, Tezkratt R, Hagel K, Haddad F, Kolomiets A, Lou Y, Li J, Shimooka M, Shlomo S, Utley D, Xiao B, Mdeiwayeh N, Natowitz J B, Majka Z, Cibor J, Kozik T and Sosin Z 1997 Phys. Rev. C 55 227 [15] Tsang M B, Gelbke C K, Liu X D, Lynch W G, Tan W P, Verde G, Xu H S, Friedman W A, Donangelo R, Souza S R, Das C B, Gupta S D and Zhabinsky D 2001 Phys. Rev. C 64 054615 [16] Botvina A S, Lozhkin O V and Trautmann W 2002 Phys. Rev. C 65 044610 [17] Zhou P, Tian W D, Ma Y G, Cai X Z, Fang D Q and Wang H W 2011 Phys. Rev. C 84 037605 [18] Fu Y, Fang D Q, Ma Y G, Cai X Z, Tian W D, Wang H W and Guo W 2009 Chin. Phys. Lett. 26 082503 [19] Fang D Q, Ma Y G, Zhong C, Ma C W, Cai X Z, Chen J G, Guo W, Su Q M, Tian W D, Wang K, Yan T Z and Shen W Q 2007 J. Phys. G: Nucl. Part. Phys. 34 2173 [20] Ono A, Danielewicz P, Friedman W A, Lynch W G and Tsang M B 2003 Phys. Rev. C 68 051601(R) [21] Ma C W, Fu Y, Fang D Q, Ma Y G, Cai X Z, Tian W D, Wang K and Zhong C 2008 Int. J. Mod. Phys. E 17 1669 [22] Minich R W, Agarwal S, Bujak A, Chuang J, Finn J E, Gutay L J, Hirsch A S, Porile N T, Scharenberg R P, Stringfellow B C and Turkot F 1982 Phys. Lett. B 118 458 [23] Hirsch A S, Bujak A, Finn J E, Gutay L J, Minich R W, Porile N T, Scharenberg R P, Stringfellow B C and Turkot F 1984 Phys. Rev. C 29 508 [24] Huang M, Chen Z, Kowalski S, Ma Y G, Wada R, Keutgen T, Hagel K, Barbui M, Bonasera A, Bottosso C, Materna T, Natowitz J B, Qin L, Rodrigues M R D, Sahu P K and Wang J 2010 Phys. Rev. C 81 044620 [25] Ma C W, Wang F, Ma Y G and Jin C 2011 Phys. Rev. C 83 064620 [26] Mocko M, Tsang M B, Andronenko L, Andronenko M, Delaunay F, Famiano M, Ginter T, Henzl V, Henzlova D, Hua H, Lukyanov S, Lynch W G, Rogers A M, Steiner M, Stolz A, Tarasov O, Goethem M J, Verde G, Wallace W S and Zalessov A 2006 Phys. Rev. C 74 054612 [27] Weizs鋍ker C F 1935 Z. Phys. 96 431 [28] Bethe H A 1936 Rev. Mod. Phys. 8 82 [29] Danielewicz P and Lee J 2009 Nucl. Phys. A 818 36 [30] Zhang L, Gao Y, Zhang H F, Chen X M, Yu M L and Li J Q 2011 Chin. Phys. Lett. 28 112102 [31] Green A E S and Edwards D F 1953 Phys. Rev. 91 46 [32] Ma C W, Wei H L, Wang J Y, Liu G J, Fu Y, Fang D Q, Tian W D, Cai X Z, Wang H W and Ma Y G 2009 Phys. Rev. C 79 034606 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|