Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060201    DOI: 10.1088/0256-307X/29/6/060201
GENERAL |
Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method
E. M. E. Zayed*, S. A. Hoda Ibrahim
Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt
Cite this article:   
E. M. E. Zayed, S. A. Hoda Ibrahim 2012 Chin. Phys. Lett. 29 060201
Download: PDF(378KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The modified simple equation method is employed to construct the exact solutions involving parameters of nonlinear evolution equations via the (1+1)-dimensional modified KdV equation, and the (1+1)-dimensional reaction-diffusion equation. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact solutions. It is shown that the proposed method provides a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.
Keywords: 02.30.Jr      05.45.Yv      02.30.Ik     
Received: 16 February 2012      Published: 31 May 2012
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
E. M. E. Zayed
S. A. Hoda Ibrahim
[1] Jawad A J M Petkovic M D and Biswas A 2009 Appl. Math. Comput. 216 2649
[2] Hirota R 1971 Phys. Rev. Lett. 27 1192
[3] Weiss J, Tabor M and Carnevalle G 1983 J. Math. Phys. 24 1405
[4] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equation and Inverse Scattering (New York: Cambridge University)
[5] Fan E 2000 Phys. Lett. A 265 353
[6] Zhou Y, Wang M and Wang Y 2003 Phys. Lett. A 308 31
[7] Inc M and Ergut M 2005 Appl. Math. E 5 89
[8] Lu D and Shi Q 2010 Int. J. Nonlinear Sci. 10 320
[9] Jawad A J M Petkovic M D and Biswas A 2009 Appl. Math. Comput. 216 3370
[10] Parkes E J and Duffy B R 1996 Comput. Phys. Commu. 98 288
[11] Miura M R 1978 Backlund Transformation (Berlin: Springer)
[12] Wang M, Li X and Zhang J 2008 Phys. Lett. A 372 417
[13] Zayed E M E and Gepreel K A 2009 J. Math. Phys. 50 013502
[14] EL-Wakil S A, Madkour M A and Abdou M A 2007 Phys. Lett. A 369 62
[15] He J H and Wu X H 2006 Chaos Solitons Fractals 30 700
[16] Jawad A J M Petkovic M D and Biswas A 2010 Appl. Math. Comput. 217 869
[17] Zayed E M E 2011 Appl. Math. Comput. 218 3962
[18] Mei J, Zhang H and Jiang D 2004 Appl. Math. E 4 85
Related articles from Frontiers Journals
[1] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 060201
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060201
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 060201
[8] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060201
[9] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060201
[10] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 060201
[11] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 060201
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 060201
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 060201
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060201
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 060201
Viewed
Full text


Abstract