Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060202    DOI: 10.1088/0256-307X/29/6/060202
GENERAL |
The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models
K. Fakhar1,2, A. H. Kara3*
1Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia, Science and Technology, 81310 UTM Skudai, Johor, Malaysia
2Ibnu Sina Institute for Fundamental Sciences, Faculty of Science, Universiti Teknologi Malaysia, Science and Technology, 81310 UTM Skudai, Johor, Malaysia
3School of Mathematics and Centre for Differential Equations, Continuum Mechanics and Applications, University of the Witwatersrand, Johannesburg Wits 2050, South Africa
Cite this article:   
K. Fakhar, A. H. Kara 2012 Chin. Phys. Lett. 29 060202
Download: PDF(381KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the symmetries, conservation laws and reduction of third-order equations that evolve from a prior reduction of models that arise in fluid phenomena. These could be the ordinary differential equations (ODEs) that are reductions of partial differential equations (PDEs) or, alternatively, PDEs related to given ODEs. In this class, the analysis includes the well-known Blasius, Chazy, and other associated third-order ODEs.
Keywords: 02.30.Hq      05.45.-a      04.20.Cv     
Received: 06 March 2012      Published: 31 May 2012
PACS:  02.30.Hq (Ordinary differential equations)  
  05.45.-a (Nonlinear dynamics and chaos)  
  04.20.Cv (Fundamental problems and general formalism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. Fakhar
A. H. Kara
[1] Olver P 1993 Application of Lie Groups to Differential Equations (New York: Springer)
[2] Hayat T, Qasim M and Mesloub S 2011 Int. J. Numer. Methods Fluids 66 963
[3] Boyd J 2008 SIAM Rev. 50 791
[4] Kara A H and Mahomed F M 2000 Int. J. Theor. Phys. 39 23
[5] Clarkson P and Olver P 1996 J. Diff. Eq. 124 225
[6] Ablowitz M J, Chakravarty S and Halburd R 1998 Asian J. Math. 2 619
[7] Naz R, Mahomed F M and Mason D P 2008 J. Nonlinear Math. Phys. 15 179
[8] Sasano Y 2010 arXiv:0708.3537v16 [math.AG]
[9] Cosgrove C M 2000 Stud. Appl. Math. 104 171
[10] Eskhamanakova K, Nugmanova G and Myrzakulov R 2011 arXiv:1102.4456v1
[11] Halburd R 1999 Nonlinearity 12 931
Related articles from Frontiers Journals
[1] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[2] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[3] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[4] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[5] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 060202
[7] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 060202
[8] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 060202
[9] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 060202
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 060202
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 060202
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 060202
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060202
[14] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 060202
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 060202
Viewed
Full text


Abstract