Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050505    DOI: 10.1088/0256-307X/29/5/050505
GENERAL |
The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model
QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan
Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
QI Kai, TANG Ming, CUI Ai-Xiang et al  2012 Chin. Phys. Lett. 29 050505
Download: PDF(1333KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The relaxation dynamics of the zero-range process (ZRP) has been an interesting problem. In this study, we set up the relationship between the ZRP and a model of traps, and investigate the slow dynamics of the ZRP in the framework of the trap model. Through statistical quantities such as the average rest time, the particle distribution, the two-time correlation function and the average escape time, we find that the particle interaction, especially the resulting condensation, can significantly influence the dynamics. In the stationary state, both the average rest time and the average escape time caused by the attraction among particles are obtained analytically. In the transient state, a hierarchical nature of the aging dynamics is revealed by both simulations and scaling analysis. Moreover, by comparing the particle diffusion in both the transient state and the stationary state, we find that the closer the ZRP systems approach the stationary state, the more slowly the particles diffuse.
Received: 05 January 2012      Published: 30 April 2012
PACS:  05.40.Fb (Random walks and Levy flights)  
  05.60.Cd (Classical transport)  
  89.75.Hc (Networks and genealogical trees)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050505       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Kai
TANG Ming
CUI Ai-Xiang
FU Yan
[1] ben-Avraham D and Havlin S 2000 Diffusion and Reactions in Fractals and Random Systems (Cambridge: Cambridge University)
[2] Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[3] Baronchelli A, Catanzaro M and Pastor-Satorras R 2008 Phys. Rev. E 78 011114
[4] Baronchelli A and Pastor-Satorras R 2010 Phys. Rev. E 82 011111
[5] Noh J D, Shim G M and Lee H 2005 Phys. Rev. Lett. 94 198701
[6] Noh J D 2005 Phys. Rev. E 72 056123
[7] Tang M, Liu Z and Zhou J 2006 Phys. Rev. E 74 036101
Tang M and Liu Z 2008 Physica A 387 1361
Tang M and Liu Z 2008 Commun. Theor. Phys. 49 252
Tang M, Liu Z, Zhu X and Wu X 2008 Int. J. Mod. Phys. C 19 927
[8] Waclaw B, Bogacz L, Burda Z and Janke W 2007 Phys. Rev. E 76 046114
[9] Tang M, Liu L and Liu Z 2009 Phys. Rev. E 79 016108
[10] Burda Z, Johnston D, Jurkiewicz J, Kaminski M, Nowak M A, Papp G and Zahed I 2002 Phys. Rev. E 65 026102
[11] Evans M R 1996 Europhys. Lett. 36 13
[12] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[13] Zhu X, Liu Z and Tang M 2007 Chin. Phys. Lett. 24 2142
[14] Shen J 2010 Chin. Phys. Lett. 27 028901
[15] Eggers J 1999 Phys. Rev. Lett. 83 5322
[16] van der Meer D, van der Weele K and Lohse D 2004 J. Stat. Mech. Theor. E 4 04004
[17] Krapivsky P L, Redner S and Leyvraz F 2000 Phys. Rev. Lett. 85 4629
[18] Bianconi G and Barabási A L 2001 Phys. Rev. Lett. 86 5632
[19] Tang M, Liu L and Li B 2010 Chaos 20 043135
[20] Bouchaud J P 1992 J. Phys. I 2 1705
Monthus C and Bouchaud J P 1996 J. Phys. A 29 3847
[21] Baronchelli A, Barrat A and Pastor-Satorras R 2009 Phys. Rev. E 80 020102(R)
[22] Catanzaro M, Boguñá M and Pastor-Satorras R 2005 Phys. Rev. E 71 027103
[23] Cohen R and Havlin S 2003 Phys. Rev. Lett. 90 058701
Related articles from Frontiers Journals
[1] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 050505
[2] Hong Zhang, Guo-Hua Li. Reaction Subdiffusion with Random Waiting Time Depending on the Preceding Jump Length[J]. Chin. Phys. Lett., 2018, 35(9): 050505
[3] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 050505
[4] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 050505
[5] Yang Song, Jing-Dong Bao. Giant Enhancement of Diffusion in a Tilted Egg-Carton Potential[J]. Chin. Phys. Lett., 2016, 33(02): 050505
[6] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 050505
[7] ZHAO Jing, HU Ya-Yun, TONG Pei-Qing. The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk[J]. Chin. Phys. Lett., 2015, 32(06): 050505
[8] LI Jing-Hui. Dilemma Produced by Infinity of a Random Walk[J]. Chin. Phys. Lett., 2015, 32(5): 050505
[9] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 050505
[10] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 050505
[11] XIE Yan-Bo, LI Yu-Jian, LI Ming, XI Zhen-Dong, WANG Bing-Hong. An Exact Numerical Approach to Calculate the First Passage Time for General Random Walks on a Network[J]. Chin. Phys. Lett., 2013, 30(11): 050505
[12] LI Min, ZHANG Yong-Sheng, GUO Gunag-Can. Quantum Random Walk in Periodic Potential on a Line[J]. Chin. Phys. Lett., 2013, 30(2): 050505
[13] LIU Jian, BAO Jing-Dong. Effective Jump Length of Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2013, 30(2): 050505
[14] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 050505
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 050505
Viewed
Full text


Abstract