Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050503    DOI: 10.1088/0256-307X/29/5/050503
GENERAL |
An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems
JIANG Jun**
State Key Laboratory of Strength and Vibration, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
JIANG Jun 2012 Chin. Phys. Lett. 29 050503
Download: PDF(1338KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new technique that can efficiently approximate the attracting set of a nonlinear dynamical system is proposed under the framework of point mapping with the cell reference method. With the aid of the approximated attracting set, the difficulties encountered by the PIM-triple method and bisection procedure in finding trajectories on the stable manifolds of chaotic saddles in basins of attraction and on basin boundaries can be overcome well. On the basis of this development, an effective method to determine saddle-type invariant limit sets of nonlinear dynamical systems can be devised. Examples are presented for the purposes of illustration and to demonstrate the capabilities of the proposed method.
Received: 21 November 2011      Published: 30 April 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.40.Vh (Global analysis and analysis on manifolds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050503       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Jun
[1] Pomeau Y and Manneville P 1980 Commun. Math. Phys. 74 189
[2] Grebogi C, Ott E and York J A 1982 Phys. Rev. Lett. 48 1507
[3] Grebogi C, Ott E and York J A 1983 Physica D 7 181
[4] Grebogi C, Ott E and York J A 1986 Phys. Rev. Lett. 56 1011
[5] Grebogi C, Ott E and York J A 1987 Physica D 24 243
[6] Nusse H E and Yorke J A 1989 Physica D 36 137
[7] Nusse H E and Yorke J A 1991 Nonlinearity 4 1183
[8] Jiang J 2011 Theor. Appl. Mech. Lett. 1 063001
[9] Jiang J and Xu J X 1994 Phys. Lett. A 188 137
[10] Hsu C S 1995 Int. J. Bifurcation Chaos 5 1085
[11] Hong L and Xu J X 1999 Phys. Lett. A 262 361
[12] He Q, Xu W, Li S and Xiao Y Z 2008 Acta Phys. Sin. 57 743 (in Chinese)
[13] Zou H L and Xu J X 2009 Sci. Chin. Ser. E: Technolog. Sci. 52 787
[14] Hsu C S 1987 Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems (Berlin: Springer)
[15] Guckenheimer J and Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Berlin: Springer)
[16] Dellnitz M and Hohmann A 1997 Numer. Math. 75 293
[17] Jiang J and Xu J X 1996 J. Sound Vib. 194 605
[18] Jiang J and Xu J X 1998 Nonlinear Dyn. 15 103
[19] Cao Y Y, Chung K W and Xu J 2011 Nonlinear Dyn. 64 221
[20] Chen S H, Chen Y Y and Sze K Y 2010 Sci. Chin. Ser. E: Technol. Sci. 53 692
[21] Manucharyan G V and Mikhlin Y V 2005 J. Appl. Math. Mech. 69 39
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 050503
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 050503
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 050503
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 050503
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 050503
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 050503
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 050503
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 050503
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 050503
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 050503
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 050503
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 050503
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 050503
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 050503
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 050503
Viewed
Full text


Abstract