Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 038901    DOI: 10.1088/0256-307X/29/3/038901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Search for Directed Networks by Different Random Walk Strategies
ZHU Zi-Qi, JIN Xiao-Ling**, HUANG Zhi-Long
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027
Cite this article:   
ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long 2012 Chin. Phys. Lett. 29 038901
Download: PDF(706KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös–Rényi model, Watts–Strogatz model, Barabási–Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
Keywords: 89.75.Hc      05.40.Fb      89.75.Fb     
Received: 27 July 2011      Published: 11 March 2012
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.40.Fb (Random walks and Levy flights)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/038901       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/038901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Zi-Qi
JIN Xiao-Ling
HUANG Zhi-Long
[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Wang B H and Zhou T 2007 J. Korean Phys. Soc. 50 134
[4] Tadic B, Rodgers G J and Thurner S 2007 Int. J. Bifurcation & Chaos 17 2363
[5] Zhou T, Fu Z Q and Wang B H 2006 Prog. Nat. Sci. 16 452
[6] Pandit S A and Amritkar R E 2001 Phys. Rev. E 63 041104
[7] Huang Z G, Xu X J, Wu Z X and Wang Y H 2006 Eur. Phys. J. B 51 549
[8] Yang H X, Wang B H, Liu J G, Han X P and Zhou T 2008 Chin. Phys. Lett. 25 2718
[9] Yang S J 2005 Phys. Rev. E 71 016107
[10] Yin C Y, Wang B H, Wang W X, Zhou T and Yang H J 2006 Phys. Lett. A 351 220
[11] Wang W X, Wang B H, Yin C Y, Xie Y B and Zhou T 2006 Phys. Rev. E 73 026111
[12] Newman M E J, Strogatz S H and Watts D J 2001 Phys. Rev. E 64 026118
[13] Erdos P and Renyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[14] Barrat A and Weigt M 2000 Eur. Phys. J. B 13 547
[15] Klemm K and Eguıluz V M 2002 Phys. Rev. E 65 057102
[16] Barabasi A L, Albert R and Jeong H 1999 Physica A 272 173
[17] Fronczak A, Fronczak P and Holyst J A 2003 Phys. Rev. E 68 046126
[18] Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 11
[19] Zhou T, Zhao M and Zhou C S 2010 New J. Phys. 12 043030
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 038901
[2] ZHAO Qing-Bai,ZHANG Xiao-Fei,SUI Dan-Ni,ZHOU Zhi-Jin,CHEN Qi-Cai,TANG Yi-Yuan,**. The Efficiency of a Small-World Functional Brain Network[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[3] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 038901
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 038901
[7] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 038901
[8] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 038901
[9] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 038901
[10] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 038901
[11] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[12] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[14] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 038901
[15] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 038901
Viewed
Full text


Abstract