CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Influence of Heating Rate on Morphologies and Magnetic Properties of α-Fe2O3 |
LI Zi-Yue1, ZHANG Hui-Min1, LIU Li-Hu1,2**, SUN Hui-Yuan1,2 |
1College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024
2Key Laboratory of Advanced Films of Hebei Province, Hebei Normal University, Shijiazhuang 050024
|
|
Cite this article: |
ZHANG Hui-Min, SUN Hui-Yuan, LIU Li-Hu et al 2012 Chin. Phys. Lett. 29 036802 |
|
|
Abstract A variety of hematite microstructures are synthesized through oxalic acid-assisted thermal treatment of iron films sputtered onto glass substrates. Petal-like α-Fe2O3 nanoslices and honeycomb-like α-Fe2O3 particles of micrometer sizes are obtained after annealing at 500°C but with different rates of heating to the final annealing temperature. Structures and morphologies of the samples are studied by means of x-ray diffraction, scanning electron microscopy and atomic force microscopy. These structures are believed to be formed during the period of increasing temperature to the final annealing temperature. Superconducting-quantum-interference-device magnetometer measurements show room-temperature ferromagnetism in these samples.
|
Keywords:
68.37.Ps
81.40.Ef
75.60.Nt
|
|
Received: 17 September 2011
Published: 11 March 2012
|
|
PACS: |
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
75.60.Nt
|
(Magnetic annealing and temperature-hysteresis effects)
|
|
|
|
|
[1] Sakhnini L and EI Hilo M 2010 J. Magn. Magn. Mater. 322 1669
[2] Frimpong R A, Dou J, Pechan M and Hilt J Z 2010 J. Magn. Magn. Mater. 322 326
[3] Azarmi S, Roa W H and Lobenberg R 2008 Adv. Drug. Deliver. Rev. 60 863
[4] Zhao N and Gao M Y 2009 Adv. Mater. 21 184
[5] Wang C G, Chen J J, Talavage T and Irudayaraj J 2009 Angew. Chem. Int. Ed. 48 2759
[6] Lu H B, Liao L, Li J C, Shuai M and Liu Y L 2008 Appl. Phys. Lett. 92 093102
[7] Cao A M, Cao L L and Gao D 2007 Appl. Phys. Lett. 91 034102
[8] Law J B K, Boothroyd C B and Thong J T L 2008 J. Cryst. Growth 310 2485
[9] Chen J T, Zhang F, Wang J, Zhang G A, Miao B B, Fan X Y, Yan D and Yan P X 2008 J. Alloys Compd. 454 268
[10] Chioncel M F, Díaz Guerra C and Piqueras J 2008 J. Appl. Phys. 104 124311
[11] Han Q, Xu Y Y, Fu Y Y, Zhang H, Wang R M, Wang T M and Chen Z Y 2006 Chem. Phys. Lett. 431 100
[12] Srivastava H, Tiwari P, Srivastava A K and Nandedkar R V 2007 J. Appl. Phys. 102 054303
[13] Ni S B, Lin S M, Pan Q T, Yang F, Huang K, Wang X Y and He D Y 2009 J. Alloys Compd. 478 876
[14] Nasibulin A G, Rackauskas S, Jiang H, Tian Y, Mudimela P R, D Shandakov S, Nasibulina L, Sainio J and Kauppinen E I 2009 Nano Res. 2 373
[15] Sun L N, Cao M H and Hu C W 2010 Solid State Sci. 12 2020
[16] Wang D B, Song C X, Gu G H and Hu Z H 2005 Mater. Lett. 59 782
[17] Yu R B, Li Z M, Wang D, Lai X Y, Xing C J and Xing X R 2009 Solid State Sci. 11 2056
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|