Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 034701    DOI: 10.1088/0256-307X/29/3/034701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Unsteady Squeezing Flow of Jeffery Fluid between Two Parallel Disks
A. Qayyum1, M. Awais1, A. Alsaedi2, T. Hayat1**
1Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
2Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia
Cite this article:   
T. Hayat, M. Awais, A. Qayyum et al  2012 Chin. Phys. Lett. 29 034701
Download: PDF(487KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate an unsteady axisymmetric flow of a Jeffrey fluid between two parallel disks. The relevant partial differential equations are modeled and simplified by using appropriate transformations. The resulting ordinary differential system is solved and a series solution is obtained. Effects of various parameters of interest on the flow quantities are seen. It is found that the velocity profile increases when porosity and squeezing parameters are increased.
Keywords: 47.10.A-      47.10.Ab      47.50.Cd     
Received: 08 September 2011      Published: 11 March 2012
PACS:  47.10.A- (Mathematical formulations)  
  47.10.ab (Conservation laws and constitutive relations)  
  47.50.Cd (Modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/034701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/034701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. Hayat
M. Awais
A. Qayyum
A. Alsaedi
[1] Stefan M J 1874 Akademie der Wissenschaften in Wien. Mathematik Naturwissen 69 713
[2] Langlois W E 1962 Appl. Math. 20 131
[3] Verma R L 1981 Wear 72 89
[4] Hamza E A 1999 J. Phys. D: Appl. Phys. 32 656
[5] Rajagopal K R and Gupta A S 1981 Int. J. Engin. Sci. 19 1009
[6] Rashidi M M, Shahmohamadi H and Dinarvand S 2008 Math. Prob. Engin. 2008 935095
[7] Domairry G and Aziz A 2009 Math. Prob. Engin. 2009 603916
[8] Liao S J 2004 Appl. Math. Comput. 147 499
[9] Bataineh A S, Noorani M S M and Hashim I 2008 Comput. Math. Appl. 55 2913
[10] Abbasbandy S 2010 Nonlin. Anal.: Real World Appl. 11 307
[11] Abbasbandy S, Shivanian E and Vajravelu K 2011 Commun. Nonlin. Sci. Numer. Simulat. 16 4268
[12] Rashidi M M, Domairry G and Dinarvand S 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 708
[13] Yao B 2009 Eur. J. Mech. B Fluids 28 689
[14] Hayat T, Awais M, Asghar S and Hendi A A 2011 ASME J. Fluid Engin. 133 061201
[15] Hayat T, Mustafa M and Obaidat S 2011 ASME J. Fluid Engin. 133 021202
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 034701
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 034701
[3] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 034701
[4] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 034701
[5] Arbab I. Arbab, Hisham. M. Widatallah. On the Generalized Continuity Equation[J]. Chin. Phys. Lett., 2010, 27(8): 034701
[6] YU Rong-Ze, LEI Qun, YANG Zheng-Ming, BIAN Ya-Nan. Nonlinear Flow Numerical Simulation of an Ultra-Low Permeability Reservoir[J]. Chin. Phys. Lett., 2010, 27(7): 034701
[7] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 034701
[8] HUAI Xiu-Lan, DONG Zhao-Yi, LI Zhi-Gang, YIN Tie-Nan, ZOU Yu,. A Novel Kinetic Model of Liquid Nitrogen's Explosive Boiling at the Initial Stage[J]. Chin. Phys. Lett., 2007, 24(9): 034701
Viewed
Full text


Abstract