Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 030308    DOI: 10.1088/0256-307X/29/3/030308
GENERAL |
Quantum State Tomography and Quantum Games
Ahmad Nawaz*
National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
Cite this article:   
Ahmad Nawaz 2012 Chin. Phys. Lett. 29 030308
Download: PDF(446KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A technique is developed for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In this technique, Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself. It is shown that for a particular set of unitary operators, these payoffs are equal to Stokes parameters for an unknown quantum state. In this way an unknown quantum state can be measured and reconstructed. Strictly speaking, this technique is not a game as no strategic competitions are involved.
Keywords: 03.65.Wj      03.65.-w      02.50.Le     
Received: 27 July 2011      Published: 11 March 2012
PACS:  03.65.Wj (State reconstruction, quantum tomography)  
  03.65.-w (Quantum mechanics)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/030308       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/030308
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmad Nawaz
[1] Schleich W P, Raymer M G and Leonhardt U 1997 J. Mod. Opt. 44 2021
[2] Peres A 1995 Quantum Theory, Concepts and Methods (Dordrecht: Kluwer)
[3] Wootters W K and Zurek W H 1982 Nature 299 802
[4] D'Ariano G M, Macchiavello C and Paris M G A 1994 Phys. Rev. A 50 4298
[5] Fano U 1957 Rev. Mod. Phys. 29 74
D'Ariano G M, Leonhardt U and Paul H 1995 Phys. Rev. A 52 R1801
[6] Vogel K, and Risken H 1989 Phys. Rev. A 40 2847
[7] Smithey D T, Beck M, Raymer M G and Faridani A 1993 Phys. Rev. Lett. 70 1244
Raymer M G, Beck M and McAlister D F 1994 Phys. Rev. Lett. 72 1137
Smithey D T, Beck M, Cooper J and Raymer M G 1993 Phys. Rev. A 48 3159
[8] Munroe M, Boggavarapu D, Anderson M E and Raymer M G 1995 Phys. Rev. A 52 R924
[9] Schiller S, Breitenbach G, Pereira S F, Muller T and Mlynek J 1996 Phys. Rev. Lett. 77 2933
Breitenbach G, Schiller S and Mlynek J 1997 Nature 387 471
[10] Paris M G A and Rehacek J 2004 Quantum States Estimation, Lecture Note on Physics (Berlin: Springer) p 649
[11] White A G, James D F V, Munro W J and Kwiat P G 2001 Phys. Rev. A 65 012301
[12] O'Brien J L, Pryde G J, Gilchrist A, James D F V, Langford N K, Ralph T C and White A G 2004 Phys. Rev. Lett. 93 080502
[13] Langford N K, Dalton R B, Harvey M D, O'Brien J L, Pryde G J, Gilchrist A, Bartlett S D and White A G 2004 Phys. Rev. Lett. 93 053601
[14] Altepeter J B, Hadley P G, Wendelken S M, Berglund A J and Kwiat P G 2004 Phys. Rev. Lett. 92 147901
[15] Nawaz Ahmad and Toor A H 2004 J. Phys. A: Math. Gen. 37 11457
[16] Eisert J, Wilkens M and Lewenstein M 1999 Phys. Rev. Lett. 83 3077
[17] Meyer D A 2002 Contemp. Math. 305 213
[18] Li Q, He Y and Jiang J P 2009 J. Phys. A: Math. Theor. 42 445303
[19] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[20] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2002 Phys. Rev. Lett. 88 137902
[21] Zhou L and Kuang L M 2003 Phys. Lett. A 315 426
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 030308
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 030308
[3] ZHANG Feng-Li,ZHANG Mei**. Emergence and Decline of Scientific Paradigms in a Two-Group System[J]. Chin. Phys. Lett., 2012, 29(4): 030308
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 030308
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030308
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 030308
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 030308
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 030308
[9] DENG Li-Li, TANG Wan-Sheng**, ZHANG Jian-Xiong . Coevolution of Structure and Strategy Promoting Fairness in the Ultimatum Game[J]. Chin. Phys. Lett., 2011, 28(7): 030308
[10] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 030308
[11] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 030308
[12] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 030308
[13] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 030308
[14] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 030308
[15] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 030308
Viewed
Full text


Abstract