Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 030304    DOI: 10.1088/0256-307X/29/3/030304
GENERAL |
Transport Properties of the Universal Quantum Equation
A. I. Arbab*
Department of Physics, Faculty of Science, University of Khartoum, PO Box 321, Khartoum 11115, Sudan
Cite this article:   
A. I. Arbab 2012 Chin. Phys. Lett. 29 030304
Download: PDF(431KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The universal quantum equation (UQE) is found to describe the transport properties of the quantum particles. This equation describes a wave equation interacting with constant scalar and vector potentials propagating in spacetime. A new transformation that sends the Schrödinger equation with a potential energy V=−1/2mc2 to Dirac's equation is proposed. The Cattaneo telegraph equation as well as a one-dimensional UQE are compatible with our recently proposed generalized continuity equations. Furthermore, a new wave equation resulted from the invariance of the UQE under the post-Galilean transformations is derived. This equation is found to govern a Klein–Gordon's particle interacting with a photon-like vector field (ether) whose magnitude is proportional to the particle's mass.
Keywords: 03.65.-w      03.65.Ge      05.60.Gg     
Received: 20 October 2011      Published: 11 March 2012
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  05.60.Gg (Quantum transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/030304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/030304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. I. Arbab
[1] Arbab A I 2010 Europhysics. Lett. 92 40001
[2] Arbab A I 2011 Appl. Phys. Research 3 160
[3] Plyukhin A V and Schofield J 2001 Phys. Rev. E 64 037101
[4] Horsthemke W 1999 Phys. Lett. A 263 285
[5] Fürth R 1920 Z. Phys. 2 244
Taylor G I 1921 Proc. Lond. Math. Soc. Ser. 20 196
Goldstein S 1951 Quart. J. Mech. Appl. Math. 4 129
[6] Kac M 1974 Rocky Mountain J. Math. 4 497
[7] Cattaneo M C 1948 Atti. Sem. Mat. Fis. Univ. Modena. 3 83
[8] Bass L and Schödinger E 1955 Proc. R. Soc. London A 232 1
[9] Arbab A I 2011 Europhys. Lett. 94 50005
[10] Cufaro N and Vigier J P 1979 Int. J. Theor. Phys. 18 807
[11] Ciubotariu C, Stancu V and Ciubotariu C 2003 Fund. Theor. Phys. 126 85
[12] Arbab A I 2011 Europhys. Lett. 96 20002
[13] Arbab A I and Widatallah H M 2010 Chin. Phys. Lett. 27 084703
[14] Arbab A I 2011 J. Mod. Phys. 2 1012
[15] Arbab A I and Widatallah H M 2010 Europhys. Lett. 92 23002
[16] Arbab A I and Yassein F A 2010 arXiv:1003.0073[physics.gen-ph]
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 030304
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 030304
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030304
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 030304
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 030304
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 030304
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030304
[8] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 030304
[9] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 030304
[10] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 030304
[11] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 030304
[12] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 030304
[13] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 030304
[14] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 030304
[15] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 030304
Viewed
Full text


Abstract