Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 024702    DOI: 10.1088/0256-307X/29/2/024702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface
M. Sajid1**, K. Mahmood2, Z. Abbas3
1The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy
2Department of Mathematics, Riphah International University, Islamabad 44000, Pakistan
3Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
Cite this article:   
Z. Abbas, M. Sajid, K. Mahmood 2012 Chin. Phys. Lett. 29 024702
Download: PDF(479KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the axisymmetric stagnation-point flow of a viscous fluid over a lubricated surface by imposing a generalized slip condition at the fluid-fluid interface. The power law non-Newtonian fluid is considered as a lubricant. The lubrication layer is thin and assumed to have a variable thickness. The transformed nonlinear ordinary differential equation governing the flow is linearized using quasilinearization. The method of superposition is adopted to convert the boundary value problem into an initial value problem and the solution is obtained numerically by using the fourth-order Runge–Kutta method. The results are discussed to see the influence of pertinent parameters. The limiting cases of Navier and no-slip boundary conditions are obtained as the special cases and found to be in excellent agreement with the existing results in the literature.
Keywords: 47.10.A-      47.15.Cb      47.50.-d      47.50.Cd     
Received: 26 April 2011      Published: 11 March 2012
PACS:  47.10.A- (Mathematical formulations)  
  47.15.Cb (Laminar boundary layers)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.50.Cd (Modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/024702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/024702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Z. Abbas
M. Sajid
K. Mahmood
[1] Navier H M L C 1823 Memoires deI'Academie Roylae des Sciences de I'Institute de France 6 389
[2] Maxwell J C 1879 Phil. Trans. R. Soc. London 170 231
[3] Beavers G S and Joseph D D 1967 J. Fluid Mech. 30 197
[4] Ebert W A and Sparrow E M 1965 J. Basic Eng. 87 1018
[5] Sparrow E M et al 1971 Int. J. Heat Mass Transfer 14 993
[6] Sparrow E M et al 1971 Phys. Fluids 14 1312
[7] Wang C Y 2003 Z. Angew Math. Phys. 54 184
[8] Milavcic M et al 2004 Z. Angew Math. Phys. 55 235
[9] Wang C Y 2002 Chem. Engg. Sci. 57 3745
[10] Ariel P D 2007 Comp. Math. Appl. 54 1169
[11] Sajid M et al 2009 J. Porous Media 12 911
[12] Thompson P A and Troian S M 1997 Nature 389 360
[13] Mathews M T and Hill J M 2007 Acta Mech. 191 195
[14] Sajid M et al 2010 Int. J. Modern Phys. B 30 5939
[15] Santra B et al 2007 Acta Mech. 194 1
[16] Na T Y 1979 Computational Methods in Engineering Boundary Value Problems (New York: Academic)
[17] Andersson H I et al 2006 Int. J. Heat Fluid Flow. 27 329
[18] Joseph D D 1980 Phys. Fluids. 23 2356
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 024702
[2] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 024702
[3] A. Qayyum, M. Awais, A. Alsaedi, T. Hayat. Unsteady Squeezing Flow of Jeffery Fluid between Two Parallel Disks[J]. Chin. Phys. Lett., 2012, 29(3): 024702
[4] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 024702
[5] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 024702
[6] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 024702
[7] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 024702
[8] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 024702
[9] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 024702
[10] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 024702
[11] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 024702
[12] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 024702
[13] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 024702
[14] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 024702
[15] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 024702
Viewed
Full text


Abstract