Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 024701    DOI: 10.1088/0256-307X/29/2/024701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Finite Spectral Semi-Lagrangian Method for Incompressible Flows
LI Shao-Wu**, WANG Jian-Ping
State Key Laboratory on Turbulence and Complex System, and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871
Cite this article:   
WANG Jian-Ping, LI Shao-Wu 2012 Chin. Phys. Lett. 29 024701
Download: PDF(1407KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new semi-Lagrangian (SL) scheme is proposed by using finite spectral regional interpolation and adequate numerical dissipation to control the nonlinear instability. The finite spectral basis function is C1 continuous at the boundary and is easy to construct. Comparison between numerical and experimental results indicates that the present method works well in solving incompressible Navier–Stokes equations for unsteady flows around airfoil with different angles of attack.
Keywords: 47.10.Ad      47.11.Kb      02.60.Cb     
Received: 22 May 2011      Published: 11 March 2012
PACS:  47.10.ad (Navier-Stokes equations)  
  47.11.Kb (Spectral methods)  
  02.60.Cb  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/024701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/024701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jian-Ping
LI Shao-Wu
[1] Roos H G, Stynes M and Tobiska L 1996 Numerical Methods for Singularly Perturbed Differential Equations (Berlin: Springer)
[2] Wesseling P 2001 Principles of Computational Fluid Dynamics (Berlin: Springer)
[3] Harlow F H and Welch J E 1965 Phys. Fluids 8 2182
[4] Leonard B P 1979 Comput. Math. Appl. Mech. Eng. 19 59
[5] Kawamura T and Kuwahara K 1984 AIAA 84 0340
[6] Wang J P 1998 Comput. Fluids 27 639
[7] Wang J P 2001 Acta Aerodaynam. Sin. 19 161
[8] Wang J P 2002 Computat. Fluid Dynam. J. 10 569
[9] Brandt A 1977 Math. Comput. 31 333
[10] Eriksson K and Johnson C 1991 SIAM J. Numer. Anal. 28 43
[11] Eriksson K and Johnson C 1995 SIAM J. Numer. Anal. 32 706
[12] Celia M A, Herrera I, Ewing R E and Russell T 1990 Water Resour. 13 187
[13] Douglas J Jr, Huang C S and Pereira F 1999 Numer. Mathematik 83 353
[14] Nakanishi T and Abe M 2001 Trans. Jpn. Soc. Aero. Space Sci. 44 143
[15] Jia W 1998 Trans. Jpn. Soc. Aero. Space Sci. 41 105
[16] Wang S and Mi J C 2010 Acta Aeronautica et Astronautica Sinica 32 41
[17] Li S W and Wang J P 2011 Appl. Math. Mech. 32 8
[18] Alam et al 2010 Experiment in Fluids 48 1
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 024701
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 024701
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 024701
[4] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 024701
[5] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 024701
[6] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 024701
[7] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 024701
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 024701
[9] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 024701
[10] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[11] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[12] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 024701
[13] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 024701
[14] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 024701
[15] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 024701
Viewed
Full text


Abstract