Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020203    DOI: 10.1088/0256-307X/29/2/020203
GENERAL |
Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation
WANG Jun-Min
Department of Mathematics and Information, Henan University of Economics and Law, Zhengzhou 450002
Cite this article:   
WANG Jun-Min 2012 Chin. Phys. Lett. 29 020203
Download: PDF(370KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two classes of periodic wave solutions to the (3+1)-dimensional soliton equation are derived by employing the Hirota bilinear method and theta function identities. These solutions are expressed in terms of Riemann theta functions of genus one and can be converted into an elliptic function format, both their long wave limit and extremum value are discussed in detail.
Keywords: 02.30.Ik      03.65.Ge.     
Received: 24 September 2011      Published: 11 March 2012
PACS:  02.30.Ik (Integrable systems)  
  03.65.Ge.  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jun-Min
[1] Hirota R and Satsuma J 1997 Prog. Theor. Phys. 57 797
[2] Hu X B and Clarkson P A 1995 J. Phys. A 28 5009
[3] Hu X B, Li C X, Nimmo J J C and Yu G F 2005 J. Phys A 38 195
[4] Hirota R and Ohta Y 1991 J. Phys Soc. Jpn. 60 798
[5] Nakamura A 1979 J. Phys. Soc. Jpn. 47 1701
[6] Nakamura A 1980 J. Phys. Soc. Jpn. 48 1365
[7] Wang J M and Yang X 2012 Nonlinear Analysis: Theory, Methods and Applications 75 2256
[8] Zhang Y, Ye L Y, Lv Y N and Zhao H Q 2007 J. Phys. A: Math. Theor. 40 5539
[9] Fan E G 2009 J. Phys. A: Math. Gen. 42 095206
[10] Fan E G and Y C Hon 2008 Phys. Rev. E 78 036607
[11] Wang J M 2011 Chin. Phys. Lett. 28 030202
[12] Wang J M and Yang X 2011 Chin. Phys. Lett. 28 090202
[13] Geng X G 2003 J. Phys. A: Math. Gen. 36 2289
[14] Geng X G and Ma Y L 2007 Phys. Lett. A 369 285
[15] Wu J P 2008 Chin. Phys. Lett. 25 4192
[16] Wu Y Q 2010 Acta Phys. Sin. 59 0054
[17] Lawden D F 1989 Elliptic Functions and Applications (Berlin: Springer Verlag) p 496
[18] Fan E G, Chow K W and Li J H 2011 Studies in Applied Mathematics (in press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020203
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020203
[3] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 020203
[4] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020203
[5] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020203
[6] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020203
[7] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020203
[8] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020203
[9] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 020203
[10] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 020203
[11] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 020203
[12] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 020203
[13] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 020203
[14] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 020203
[15] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 020203
Viewed
Full text


Abstract