GENERAL |
|
|
|
|
Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation |
WANG Jun-Min |
Department of Mathematics and Information, Henan University of Economics and Law, Zhengzhou 450002
|
|
Cite this article: |
WANG Jun-Min 2012 Chin. Phys. Lett. 29 020203 |
|
|
Abstract Two classes of periodic wave solutions to the (3+1)-dimensional soliton equation are derived by employing the Hirota bilinear method and theta function identities. These solutions are expressed in terms of Riemann theta functions of genus one and can be converted into an elliptic function format, both their long wave limit and extremum value are discussed in detail.
|
Keywords:
02.30.Ik
03.65.Ge.
|
|
Received: 24 September 2011
Published: 11 March 2012
|
|
|
|
|
|
[1] Hirota R and Satsuma J 1997 Prog. Theor. Phys. 57 797
[2] Hu X B and Clarkson P A 1995 J. Phys. A 28 5009
[3] Hu X B, Li C X, Nimmo J J C and Yu G F 2005 J. Phys A 38 195
[4] Hirota R and Ohta Y 1991 J. Phys Soc. Jpn. 60 798
[5] Nakamura A 1979 J. Phys. Soc. Jpn. 47 1701
[6] Nakamura A 1980 J. Phys. Soc. Jpn. 48 1365
[7] Wang J M and Yang X 2012 Nonlinear Analysis: Theory, Methods and Applications 75 2256
[8] Zhang Y, Ye L Y, Lv Y N and Zhao H Q 2007 J. Phys. A: Math. Theor. 40 5539
[9] Fan E G 2009 J. Phys. A: Math. Gen. 42 095206
[10] Fan E G and Y C Hon 2008 Phys. Rev. E 78 036607
[11] Wang J M 2011 Chin. Phys. Lett. 28 030202
[12] Wang J M and Yang X 2011 Chin. Phys. Lett. 28 090202
[13] Geng X G 2003 J. Phys. A: Math. Gen. 36 2289
[14] Geng X G and Ma Y L 2007 Phys. Lett. A 369 285
[15] Wu J P 2008 Chin. Phys. Lett. 25 4192
[16] Wu Y Q 2010 Acta Phys. Sin. 59 0054
[17] Lawden D F 1989 Elliptic Functions and Applications (Berlin: Springer Verlag) p 496
[18] Fan E G, Chow K W and Li J H 2011 Studies in Applied Mathematics (in press)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|