Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020202    DOI: 10.1088/0256-307X/29/2/020202
GENERAL |
Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection
Saliou Youssoufa1,2**, Victor K. Kuetche1,2, Timoleon C. Kofane2
1National Advanced School of Engineering, University of Yaounde I, P.O. Box 8390, Cameroon
2Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon
Cite this article:   
Download: PDF(605KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based upon the group theoretical jet bundle formalism introduced by Wahlquist and Estabrook for discussing the complete integrability of soliton systems, we investigate the prolongation structure of Wadati–Konno–Ichikawa isospectral evolution equations. As a result, we unearth a new physical coupled system entailing a hidden structural symmetry SL(3,R) arising in the description of ultra−short pulse propagation in optical nonlinear media. As a matter of fact, we depict a graphical representation of one-breather and two-breather ultra-short pulses in motion with a non-zero angular momentum. By extending the previous study to multidimensional symmetry SL(n,R), we unearth a more general class of multicomponent coupled nonlinear ultra-short pulse system with its associated inverse scattering formulation particularly useful in soliton theory.
Keywords: 02.03.Ik      05.45.Yv     
Received: 14 July 2011      Published: 11 March 2012
PACS:  02.03.Ik  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Harisson B K 2005 Sym. Int. Geo. Med. Appl. (SIGMA) 1 1
[2] Bracken P 2010 J. Math. Phys. 51 113502
[3] Wang D S 2010 Nonlinear Analysis 73 270
[4] Duan X J, Deng M, Zhao W Z and Wu K 2007 J. Phys. A 40 3831
[5] Ming D and Li L M 2010 Commun. Theor. Phys. 53 218
[6] Bouetou T B, Souleymanou A, Kuetche V K, Mouna F and Kofane T C 2011 J. Math. Anal. Appl. 377 269
[7] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1
[8] Estabrook F B and Wahlquist H D 1976 J. Math. Phys. 17 1293
[9] Wadati M, Konno K and Ichikawa Y H 1979 J. Phys. Soc. Jpn. 46 1965
[10] Wadati M, Konno K and Ichikawa Y H 1979 J. Phys. Soc. Jpn. 47 1698
[11] Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry (New York: Willey)
 [12] Morris H C 1977 J. Math. Phys. 18 533
[13] Crampin M, Pirani F A E and Robinson D C 1977 Lett. Math. Phys. 2 15
[14] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman)
 [15] Cartan E 1945 Les Systèmes Différentiels Extérieurs et Leurs Applications Géométriques (Paris: Hermann)
 [16] Herman R 1976 Phys. Rev. Lett. 36 835
[17] Schäfer T and Wayne C E 2004 Physica D 196 90
[18] Hirota R 1971 Phys. Rev. Lett. 27 1192
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 020202
[7] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 020202
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020202
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020202
[10] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020202
[11] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 020202
[12] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 020202
[13] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 020202
[14] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 020202
[15] Souleymanou Abbagari, **, Bouetou Bouetou Thomas, Kuetche Kamgang Victor, Mouna Ferdinand, Timoleon Crepin Kofane . Prolongation Structure Analysis of a Coupled Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(2): 020202
Viewed
Full text


Abstract