Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020201    DOI: 10.1088/0256-307X/29/2/020201
GENERAL |
Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System
ZHENG Shi-Wang1**, WANG Jian-Bo1, CHEN Xiang-Wei1, XIE Jia-Fang2
1School of Physics and electrical information, Shangqiu Normal College, Shangqiu 476000
2College of Science, North China University of Technology, Beijing 100144
Cite this article:   
ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei et al  2012 Chin. Phys. Lett. 29 020201
Download: PDF(421KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Operational systems of spacecraft are general variable mass mechanics systems, and their symmetries and conserved quantities imply profound physical rules of the space system. We study the Mei symmetry of Tzénoff equations for a variable mass nonholonomic system and the new conserved quantities derived. The function expression of the new conserved quantities and the criterion equation which deduces these conserved quantities are presented. This result has some theoretical values in further research of conservation laws obeyed by the variable mass system.
Keywords: 02.20.Sv      11.30.-j      45.20.Jj     
Received: 03 November 2011      Published: 11 March 2012
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Shi-Wang
WANG Jian-Bo
CHEN Xiang-Wei
XIE Jia-Fang
[1] Noether A E 1918 Nachr. Akad. Wiss. Göttingen. Math. Phys. KIII 235

[2] Li Z P 1993 Classical and Quantum Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press)

[3] Shi S Y and Fu J L 2011 Chin. Phys. B 20 021101

[4] Mei F X 2000 J. Beijing Inst. Technol. 9 120

[5] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)

[6] Luo S K and Zhang Y F et al 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press)

[7] Fu J L, Wang X J and Xie F P 2008 Chin. Phys. Lett. 25 2413

[8] Chen X W, Liu C M and Li Y M 2006 Chin. Phys. 15 470

[9] Luo S K 2007 Chin. Phys. Lett. 24 3017

[10] Wu H B and Mei F X 2010 Chin. Phys. B 19 030303

[11] Zhang Y and Ge W K 2009 Acta Phys. Sin. 58 7447 (in Chinese)

[12] Lou Z M 2010 Acta Phys. Sin. 59 0719

[13] Liu X W, Li Y C and Xia L L 2011 Chin. Phys. B 20 070203

[14] Liu C, Liu S X, Mei F X and Guo Y X 2008 Acta Phys. Sin. 57 6709 (in Chinese)

[15] Xia L L 2011 Chin. Phys. Lett. 28 040201

[16] Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese)

[17] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)

[18] Cai J L 2008 Chin. Phys. Lett. 25 1523

[19] Wang P 2011 Chin. Phys. Lett. 28 040203

[20] Jia L Q, Xie Y L and Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese)

[21] Xie Y L and Jia L Q 2010 Chin. Phys. Lett. 27 120201

[22] Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)

[23] Huang W L and Cai J L 2011 Chin. Phys. Lett. 28 110203

[24] Li Y M 2010 Chin. Phys. Lett. 27 010202

[25] Zhang J F 1989 Chin. Sci. Bull. 34 1756

[26] Luo S K 1994 Acta Math. Sci. 14 168

[27] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202

[28] Zheng S W, Jia L Q and Yu H S 2006 Chin. Phys. 15 1399

[29] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys. Lett. 25 809

[30] Zheng S W, Xie J F and Jia L Q 2007 Commun. Theor. Phys. 48 43

[31] Zheng S W, Xie J F, Chen X W and Du X L 2010 Acta Phys. Sin. 59 5209 (in Chinese)

[32] Zheng S W, Xie J F, Wang J B and Chen X W 2010 Chin. Phys. Lett. 27 030307

[33] Mei F X 2003 J. Beijing Inst. Technol. 23 1

[34] Fang J H 2003 Commun. Theor. Phys. 40 269

[35] Zhang P Y and Fang J H 2006 Acta Phys. Sin. 55 3813 (in Chinese)

[36] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press)
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 020201
[2] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 020201
[3] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 020201
[4] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 020201
[5] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 020201
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 020201
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 020201
[8] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 020201
[9] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 020201
[10] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 020201
[11] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 020201
[12] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 020201
[13] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 020201
[14] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 020201
[15] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 020201
Viewed
Full text


Abstract