Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 123201    DOI: 10.1088/0256-307X/29/12/123201
ATOMIC AND MOLECULAR PHYSICS |
Experimental Determination (~mHz) of the Ground-State Hyperfine Separation of Trapped 199Hg+ in a Hyperbolic Paul Trap
HE Yue-Hong1,2,3, SHE Lei1,2**, CHEN Yi-He1,2, YANG Yu-Na1,2,3, LIU Hao1,2,3, LI Jiao-Mei1,2**
1Key Laboratory of Atomic Frequency Standards (KLAFS), Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3Graduate School, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
HE Yue-Hong, SHE Lei, CHEN Yi-He et al  2012 Chin. Phys. Lett. 29 123201
Download: PDF(509KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Ramsey fringes on the ground-state hyperfine transition of 199Hg+ (ΔF=1, ΔmF=0) ions trapped in a hyperbolic Paul trap are firstly observed with the method of time-separated oscillatory fields. The full width at half maximum of central Ramsey fringes is about 25 mHz and the corresponding quality factor Q of the line is greater than 1012 for the trapped 199Hg+ microwave frequency standard. The hyperfine transition frequency shifted by magnetic field is also measured by the high-resolution Ramsey fringes. The final result is Δνhfs=40507347997.3(0.5) Hz, which is corrected to zero magnetic field.
Received: 24 July 2012      Published: 04 March 2013
PACS:  32.30.-r (Atomic spectra?)  
  32.10.Fn (Fine and hyperfine structure)  
  37.10.Gh (Atom traps and guides)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/123201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/123201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Yue-Hong
SHE Lei
CHEN Yi-He
YANG Yu-Na
LIU Hao
LI Jiao-Mei
[1] Ramsey N F 1950 Phys. Rev. 78 695
[2] Ramsey N F 1990 Rev. Mod. Phys. 62 541
[3] Clairon A et al 1991 Europhys. Lett. 16 165
[4] Essen L and Parry J V L 1957 Phil. Trans. R. Soc. Lond. A 250 45
[5] Lea S N 2007 Rep. Prog. Phys. 70 1473
[6] Itano W M and Wineland D J 1981 Phys. Rev. A 24 1364
[7] Wineland D J, Bollinger J J and Itano W M 1983 Phys. Rev. Lett. 50 628
[8] Bollinger J J, Prestage J D, Itano W M and Winelan D J 1985 Phys. Rev. Lett. 54 1000
[9] Major F G and Werth G January 1978 Appl. Phys. 15 201
[10] Prstage J D, Tjoelker R L, Dick G J and Malkei L 1992 J. Mordern Opt. 39 221
[11] Prestage J D, Tjoelker R L and Maleki L 1995 Phys. Rev. Lett. 74 3511
[12] McGuire M D, Petsch R and Werth G 1978 Phys. Rev. A 17 1999
[13] Cutler L S, Giffard R P and McGuire M D 1985 Appl. Phys. B 36 137
[14] She L, Wang W M, Bai L, Sun H Y, Zhu X W, Li J M and Gao K L 2008 Chin. Phys. Lett. 25 1653
[15] Major F G and Werth G 1973 Phys. Rev. Lett. 30 1155
[16] Prestage J D, Dick G J and Maleki 1989 J. Appl. Phys. 66 1013
[17] Tjoelker R L, Chung S, Diener W, Kirk A et al 2000 IEEE/EIA INterNatl. Frequency Control Symposium Exhibition (Kansas City USA 7–9 June 2000) p 668
Related articles from Frontiers Journals
[1] Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom[J]. Chin. Phys. Lett., 2018, 35(4): 123201
[2] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 123201
[3] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Dual-Wavelength Bad Cavity Laser as Potential Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(09): 123201
[4] XU Zhi-Chao, PAN Duo, ZHUANG Wei, CHEN Jing-Biao. Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(08): 123201
[5] ZHU Chuan-Wen, TAO Zhi-Ming, CHEN Mo, LIU Zhong-Zheng, ZHANG Xiao-Gang, ZHANG Sheng-Nan, CHEN Jing-Biao. Population Distribution of Excited States in Cs Electrodeless Discharge Lamp[J]. Chin. Phys. Lett., 2015, 32(06): 123201
[6] LIU Zhong-Zheng, TAO Zhi-Ming, JIANG Zhao-Jie, CHEN Jing-Biao. Cs 728 nm Laser Spectroscopy and Faraday Atomic Filter[J]. Chin. Phys. Lett., 2014, 31(12): 123201
[7] LIU Zhong-Zheng, XUE Xiao-Bo, NIU Fu-Zeng, ZHANG Li-Guo, LING Li, CHEN Jing-Biao. Laser 728 nm Spectroscopy of Electrodeless Discharge Rb Lamp[J]. Chin. Phys. Lett., 2014, 31(12): 123201
[8] YANG Hai-Feng, GAO Wei, CHENG Hong, LIU Hong-Ping. Electron Dynamics of Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2014, 31(10): 123201
[9] ZHENG Hui-Jie, QUAN Wei, LIU Xiang, CHEN Yao, LU Ji-Xi. Determination of Atomic Number Densities of 87Rb and 3He Based on Absorption Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(10): 123201
[10] ZHANG Yu-Yu, CHEN Qing-Hu, ZHU Shi-Yao. Vacuum Rabi Splitting and Dynamics of the Jaynes–Cummings Model for Arbitrary Coupling[J]. Chin. Phys. Lett., 2013, 30(11): 123201
[11] ZHANG Sheng-Nan, WANG Yan-Fei, ZHANG Tong-Gang, ZHUANG Wei, CHEN Jing-Biao. A Potassium Atom Four-Level Active Optical Clock Scheme[J]. Chin. Phys. Lett., 2013, 30(4): 123201
[12] WANG Yan-Fei, CHEN Jing-Biao. Superradiant Laser with Ultra-Narrow Linewidth Based on 40Ca[J]. Chin. Phys. Lett., 2012, 29(7): 123201
[13] YIN Cong**, QIAN Jin, ZHANG Xiao-Ping, SHI Chun-Ying, WANG Han-Ping, HUANG Sheng-Ye . Frequency Stabilization Using Polarization Spectroscopy and Cr-He Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2011, 28(9): 123201
[14] YUN Chen-Xia, TENG Hao**, ZHANG Wei, WANG Li-Feng, ZHAN Min-Jie, HE Xin-Kui, WANG Bing-Bing, WEI Zhi-Yi** . Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses[J]. Chin. Phys. Lett., 2011, 28(7): 123201
[15] DING Qi-Yong, **, ZHANG Song-Bin, WANG Jian-Guo . Simulation of Hydrogen Emission Spectrum in Debye Plasmas[J]. Chin. Phys. Lett., 2011, 28(5): 123201
Viewed
Full text


Abstract