FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
The 1×4 Optical Splitters Based on Silicon Photonic Crystal Self-Collimation Ring Resonators |
ZHUANG Dong-Xia1, CHEN Xi-Yao2**, LI Jun-Jun1, QIANG Ze-Xuan1, JIANG Jun-Zhen1, CHEN Zhi-Yong1, QIU Yi-Shen1, LI Hui1 |
1School of Physics and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007 2Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108
|
|
Cite this article: |
ZHUANG Dong-Xia, CHEN Xi-Yao, LI Jun-Jun et al 2012 Chin. Phys. Lett. 29 124201 |
|
|
Abstract We report 1 × 4 optical splitters (OSs) with different splitting ratios based on either rod-type or hole-type silicon photonic crystal self-collimation ring resonators (SCRRs). The four beam splitters of the OSs are formed by changing the radii of silicon rods or air holes. The light beam propagating along the SCRR can be controlled by the self-collimation effect. The transmission spectra at the through and drop ports are investigated by using the finite-difference time-domain (FDTD) method. The simulated results agree well with the theoretical calculation. For 1550-nm dropping wavelength, the free spectral ranges for rod-type and hole-type configurations are 28.8 nm and 32.5 nm, respectively, which almost cover the whole optical communication C-band window. The dimensions of these structures are only about 10 μm × 10 μm .
|
|
Received: 06 July 2012
Published: 04 March 2013
|
|
PACS: |
42.70.Qs
|
(Photonic bandgap materials)
|
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
42.82.Gw
|
(Other integrated-optical elements and systems)
|
|
|
|
|
[1] John S 1987 Phys. Rev. Lett. 58 2486 [2] Krauss T F and De La Rue R M 1999 Prog. Quantum Electron. 23 51 [3] Notomi M 2000 Phys. Rev. B 62 10696 [4] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 [5] Mocella V 2005 Opt. Express 13 1361 [6] Parimi P V, Lu W T, Vodo P and Sridhar S 2003 Nature 426 404 [7] Kosaka H 1999 Appl. Phys. Lett. 74 1212 [8] Witzens J, Loncar M and Scherer A 2002 IEEE J. Sel. Top. Quantum Electron. 8 1246 [9] Rakich P T, Dahlem M S, Tandon S, Ibanescu M, Soljacic M, Petrich G S, Joannopoulos J D, Kolodziejski L A and Ippen E P 2006 Nat. Mater. 5 93 [10] Lee S 2005 Appl. Phys. Lett. 87 181106 [11] Yu X 2003 Appl. Phys. Lett. 83 3251 [12] Prather D W, Shi S, Pustai D M, Chen C, Venkataraman S, Sharkawy A, Schneider G J and Murakowski J 2004 Opt. Lett. 29 50 [13] Shi S, Sharkawy A, Chen C, Pustai D M and Prather D W 2004 Opt. Lett. 29 617 [14] Pustai D, Shi S, Chen C, Sharkawy A and Prather D 2004 Opt. Express 12 1823 [15] Chen X, Zhao D, Qiang Z, Lin G, Li H, Qiu Y and Zhou W 2010 Appl. Opt. 49 5878 [16] Kim T T, Lee S G, Kim S H, Kim J E, Park H Y and Kee C S 2010 Opt. Express 18 17106 [17] Wang Y 2007 Proc. SPIE 6838 683804 [18] Chen X, Qiang Z, Zhao D, Wang Y, Li H, Qiu Y and Zhou W 2011 Opt. Commun. 284 490 [19] Kim T T, Lee S G, Park H Y, Kim J E and Kee C S 2010 Opt. Express 18 5384 [20] Zhao D 2007 Appl. Phys. Lett. 90 231114 [21] Chen X, Li H, Qiu Y, Wang Y and Ni B 2008 Chin. Phys. Lett. 25 4307 [22] Chen X, Lin G, Li J, Xu X, Jiang J, Qiang Z, Qiu Y and Li H 2012 Chin. Phys. Lett. 29 014210 [23] Johnson S and Joannopoulos J 2001 Opt. Express 8 173 [24] Li J, Chen X, Qiang Z, Jiang J, Lin G, Xu X, Li H and Qiu Y 2011 Opt. Commun. 284 5839 [25] Chen X, Qiang Z, Zhao D, Li H, Qiu Y, Yang W and Zhou W 2009 Opt. Express 17 19808 [26] http://ab-initio.mit.edu/wiki/index.php/Meep |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|