Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120301    DOI: 10.1088/0256-307X/29/12/120301
GENERAL |
Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System
WANG Bo1, HUANG Hai-Lin2, SUN Zhao-Yu2**, KOU Su-Peng1
1Department of Physics, Beijing Normal University, Beijing 100875
2School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430000
Cite this article:   
WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu et al  2012 Chin. Phys. Lett. 29 120301
Download: PDF(1193KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the ability of quantum fidelity in detecting the classical phase transitions (CPTs) in a two-dimensional Heisenberg–Ising mixed spin model, which has a very rich phase diagram and is exactly soluble. For a two-site subsystem of the model, the reduced fidelity (including the operator fidelity and the fidelity susceptibility) at finite temperatures is calculated, and it is found that an extreme value presents at the critical temperature, thus shows a signal for the CPTs. In some parameter region, the signal becomes blurred. We propose to use the "normalized fidelity susceptibility" to solve this problem.
Received: 04 June 2012      Published: 04 March 2013
PACS:  03.67.-a (Quantum information)  
  05.30.Rt (Quantum phase transitions)  
  05.50.+q (Lattice theory and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120301       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Bo
HUANG Hai-Lin
SUN Zhao-Yu
KOU Su-Peng
[1] Subir S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[2] Larsson D and Johannesson H 2005 Phys. Rev. Lett. 95 196406
[3] Song J L, Gu S J and Lin H Q 2006 Phys. Rev. B 74 155119
[4] Luo S 2008 Phys. Rev. A 77 042303
[5] Gu S J 2010 Int. J. Mod. Phys. B 24 4371
[6] Zanardi P and Paunkovi'c N 2006 Phys. Rev. E 74 031123
[7] Paunkovi'c N Sacramento P D Nogueira P Vieira V R and Dugaev V K 2008 Phys. Rev. A 77 052302
[8] Kwok H M Ho C S and Gu S J 2008 Phys. Rev. A 78 062302
[9] Quan H T and Cucchietti F M 2009 Phys. Rev. E 79 031101
[10] Erik E and Henrik J 2009 Phys. Rev. A 79 060301
[11] Xiong H N, Ma J, Wang Y and Wang X G 2009 J. Phys. A: Math. Theor. 42 065304
[12] Richard J 1994 J. Mod. Opt. 41 2315
[13] Paolo Z, Quan H T, Wang X G and Sun C P 2007 Phys. Rev. A 75 032109
[14] Wang X G, Yu C S and Yi X X 2008 Phys. Lett. A 373 58
[15] You W L Li Y W and Gu S J 2007 Phys. Rev. E 76 022101
[16] Cheng W W and Liu J M 2010 Phys. Rev. A 82 012308
[17] Zhang H B and Tian L J 2010 Chin. Phys. Lett. 27 050304
[18] Gu S J 2009 Chin. Phys. Lett. 26 026401
[19] Jozef S and Michal J 2002 Phys. Rev. B 66 174415
[20] Sun Z Y, Li L, Li N, Yao K L, Liu J, Luo B, Du G H and Li H N 2011 Europhys. Lett. 95 30008
[21] Heuvel W V and Chibotaru L F 2010 Phys. Rev. B 82 174436
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 120301
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 120301
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 120301
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 120301
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 120301
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 120301
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 120301
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 120301
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 120301
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 120301
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 120301
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 120301
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 120301
Viewed
Full text


Abstract