Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120302    DOI: 10.1088/0256-307X/29/12/120302
GENERAL |
Violation of Leggett–Garg Inequalities in Single Quantum Dots
SUN Yong-Nan, ZOU Yang, GE Rong-Chun, TANG Jian-Shun, LI Chuan-Feng**
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
SUN Yong-Nan, ZOU Yang, GE Rong-Chun et al  2012 Chin. Phys. Lett. 29 120302
Download: PDF(472KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the violation of two types of Leggett–Garg (LG) inequalities in self-assembled quantum dots under the stationarity assumption. By comparing the two types of LG inequalities, we find the better one that is easier to be tested in an experiment. In addition, we show that the fine-structure splitting, background noise and temperature of quantum dots greatly affect the violation of LG inequalities.
Received: 28 August 2012      Published: 04 March 2013
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  78.67.Hc (Quantum dots)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Yong-Nan
ZOU Yang
GE Rong-Chun
TANG Jian-Shun
LI Chuan-Feng
[1] Leggett A J and Garg A 1985 Phys. Rev. Lett. 54 857
[2] Huelga S F, Marshall T W and Santos E 1997 Europhys. Lett. 38 249
[3] Tesche C D 1990 Phys. Rev. Lett. 64 2358
[4] Paz J P and Mahler G 1993 Phys. Rev. Lett. 71 3235
[5] Xu J S, Li C F, Zou X B and Guo G C 2011 Sci. Rep. 1 101
[6] Palacios-Laloy A, Mallet F, Nguyen F, Bertet P, Vion D, Esteve D and Korotov A N 2010 Nat. Phys. 6 442
[7] Dressel J, Broadbent C J, Howell J C and Jordan A N 2011 Phys. Rev. Lett. 106 040402
[8] Goggin M E, Almeida M P, Barbieri M, Lanyon B P, O'Brien B P, White A G and Pryde G J 2011 Proc. Natl. Acad. Sci. USA 108 1256
[9] Huelga S F, Marshall T W and Santos E 1995 Phys. Rev. A 52 R2497
[10] Huelga S F, Marshall T W and Santos E 1996 Phys. Rev. A 54 1798
[11] Waldherr G, Neumann P, Huelga S F, Jelezko F and Wrachtrup J 2011 Phys. Rev. Lett. 107 090401
[12] Shields A J 2007 Nat. Photon. 1 215
[13] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[14] Benson O, Santori C, Pelton M and Yamamoto Y 2000 Phys. Rev. Lett. 84 2513
[15] Stevenson R M, Young R J, Atkinson P, Cooper K, Ritchie D A and Shields A J 2006 Nature 439 179
[16] Young R J, Stevenson R M, Atkinson P, Cooper K, Ritchie D A and Shields A J 2006 New J. Phys. 8 29
[17] Stevenson R M, Hudson A J, Young R J, Atkinson P, Cooper K, Ritchie D A and Shields A J 2007 Opt. Express 15 6507
[18] Stevenson R M, Hudson A J, Bennett A J, Young R J, Nicoll C A, Ritchie D A and Shields A J 2008 Phys. Rev. Lett. 101 170501
[19] Wang Q Q, Muller A, Cheng M T, Zhou H J, Bianucci P and Shih C K 2005 Phys. Rev. Lett. 95 187404
[20] Zou Y, Gong M, Li C F, Chen G, Tang J S and Guo G C 2010 Phys. Rev. A 81 064303
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 120302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 120302
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 120302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 120302
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 120302
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 120302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 120302
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 120302
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 120302
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 120302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 120302
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 120302
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 120302
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 120302
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 120302
Viewed
Full text


Abstract