GENERAL |
|
|
|
|
Quantum Stackelberg Duopoly with Continuous Distributed Incomplete Information |
WANG Xia 1*, HU Cheng-Zheng2 |
1Huazhong University of Science and Technology Wenhua College, Wuhan 430074 2Department of Physics, Wuhan University, Wuhan 430072
|
|
Cite this article: |
WANG Xia, HU Cheng-Zheng 2012 Chin. Phys. Lett. 29 120303 |
|
|
Abstract A general model of the quantum Stackelberg duopoly is constructed by introducing the "minimal" quantum structure into the Stackelberg duopoly with continuous distributed incomplete information, where both players only know the continuous distribution of the competitor's unit cost. In this model, the cases with complete information, discrete distributed incomplete information, and continuous distributed asymmetric information are all involved. Because of different roles played by the total information uncertainty and the information asymmetry, the game exhibits some new interesting features, such as the total information uncertainty can counteract or improve the first-mover advantage according to the value of the quantum entanglement. What's more, this general model will be helpful for the government to reduce the abuses of oligopolistic competition and to improve the economic efficiency.
|
|
Received: 17 August 2012
Published: 04 March 2013
|
|
|
|
|
|
[1] D A Meyer 1999 Phys. Rev. Lett. 82 1052 [2] Eisert J, Wilkens M and Lewenstein M 1999 Phys. Rev. Lett. 83 3077 [3] Li H, Du J F and Massar S 2002 Phys. Lett. A 306 73 [4] Lo C F and Kiang D 2004 Phys. Lett. A 321 94 [5] Du J F, Li H and Ju C Y 2003 Phys. Rev. E 68 016124 [6] Qin G, Chen X, Sun M et al 2005 J. Phys. A: Math. Theor. 38 4247 [7] Chen X, Qin G, Zhou X Y et al 2005 Chin. Phys. Lett. 22 1033 [8] Lo C F and Kiang D 2003 Phys. Lett. A 318 333 [9] Lo C F and Kiang D 2005 Phys. Lett. A 346 65 [10] Wang X, Yang X H, Miao L et al 2007 Chin. Phys. Lett. 24 3040 [11] Benjamin S C and Hayden P M 2001 Phys. Rev. A 64 030301 [12] Lo C F and Kiang D 2003 Europhys. Lett. 64 592 [13] Qin G, Chen X, Sun M et al 2005 Phys. Lett. A 340 78 [14] Li Y, Qin G, Zhou X Y et al 2006 Phys. Lett. A 355 447 [15] Khan S, Ramzan M and Khan M K 2010 Chin. Phys. Lett. 27 080302 [16] Li S B 2011 J. Phys. A: Math. Theor. 44 295302 [17] Sekiguchi Y, Sakahara K and Sato T 2010 J. Phys. A: Math. Theor. 43 145303 [18] Zhu X and Kuang L M 2007 J. Phys. A: Math. Theor. 40 7729 [19] Zhu X and Kuang L M 2008 Commun. Theor. Phys. 49 111 [20] Khan S, Ramzan M and Khan M K 2010 J. Phys. A: Math. Theor. 43 375301 [21] Khan S and Khan M K 2011 Chin. Phys. Lett. 28 070202 [22] Guo H, Zhang J and Koehler G J 2008 Desion Support Syst. 46 318 [23] Du J F, Li H, Xu X et al 2002 Phys. Rev. Lett. 88 137902 [24] Du J F, Ju C Y and Li H 2005 J. Phys. A: Math. Theor. 38 1559 [25] Gibbons R 1992 Game Theory for Applied Economists (Princeton NJ: Princeton University) Bierman H S Fernandez L 1998 Game Theory with Economic Applications 2nd edn (Reading, MA: Sddison-Wesley) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|