Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 118101    DOI: 10.1088/0256-307X/29/11/118101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Structural and Optical Behavior of Germanium Quantum Dots
ALIREZA Samavati1, Z. Othaman1, S. K. Ghoshal2**, M. R. Dousti2, R. J. Amjad2
1Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Cite this article:   
ALIREZA Samavati, Z. Othaman, S. K. Ghoshal et al  2012 Chin. Phys. Lett. 29 118101
Download: PDF(1329KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Controlled growth, synthesis, and characterization of a high density and large-scale Ge nanostructure by an easy fabrication method are key issues for optoelectronic devices. Ge quantum dots (QDs) having a density of ~1011 cm?2 and a size as small as ~8 nm are grown by radio frequency magnetron sputtering on Si (100) substrates under different heat treatments. The annealing temperature dependent structural and optical properties are measured using AFM, XRD, FESEM, EDX, photoluminescence (PL) and Raman spectroscopy. The effect of annealing is found to coarsen the Ge QDs from pyramidal to dome-shaped structures as they grow larger and transform the nanoislands into relatively stable and steady state configurations. Consequently, the annealing allows the intermixing of Si into the Ge QDs and thereby reduces the strain energy that enhances the formation of larger nanoislands. The room temperature PL spectra exhibits two strong peaks at ~2.87 eV and ~3.21 eV attributed to the interaction between Ge, GeOx and the possibility of the presence of QDs core-shell structure. No reports so far exist on the red shift ~0.05 eV of the strongest PL peak that results from the effect of quantum confinement. Furthermore, the Raman spectra for the pre-annealed QDs that consist of three peaks at around ~305.25 cm?1, 409.19 cm?1 and 515.25 cm?1 are attributed to Ge-Ge, Ge-Si, and Si-Si vibration modes, respectively. The Ge-Ge optical phonon frequency shift (~3.27 cm?1) associated with the annealed samples is assigned to the variation of shape, size distribution, and Ge composition in different QDs. The variation in the annealing dependent surface roughness and the number density is found to be in the range of ~0.83 to ~2.24 nm and ~4.41 to ~2.14 × 1011 cm?2, respectively.
Received: 06 July 2012      Published: 28 November 2012
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
  78.55.Ap (Elemental semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/118101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/118101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ALIREZA Samavati
Z. Othaman
S. K. Ghoshal
M. R. Dousti
R. J. Amjad
[1] MacLeod J M, Cojocaru C V, Ratto F, Harnagea C, Bernardi A, Alonso M I and Rosei F 2012 Nanotechnology 23 065603
[2] Liu J L, Wan J, Jiang Z M, Khitun A and Wang K L 2002 J. Appl. Phys. 92 6804
[3] Dilliway G D M and Bagnall D M 2003 J. Mater. Sci. Mater. Electron. 14 323
[4] Ribeiro G M, Bratkovski A M, Kamins T I, Ohlberg D A and Williams R S 1998 Science 279 3533
[5] Capellini G, Gaspare L, Palange E and Evangelisti F 1997 Appl. Phys. Lett. 70 493
[6] Ray S K and Das K 2005 Opt. Mater. 27 948
[7] Fan W K, Zhang Y and Weifeng Z 2012 Appl. Surf. Sci. 258 1935
[8] Samavati A R, Aldaw F, Ghoshal S K, Othaman Z and Sakrani S 2012 J. Ovonic Res. 8 65
[9] Mestanza S N M, Rodriguez E and Frateschi N C 2006 Nanotechnology 17 4548
[10] Sun K W, Sue S H and Liu C W 2005 Physica E 28 525
[11] Riabinina D, Durand C and Chaker M 2006 Nanotechnology 17 2152
[12] Oku T, Nakayama T, Kuno M, Nozue Y, Wallenberg L R, Niihara K and Suganuma K 2000 Mater. Sci. Eng. B 74 242
[13] Liu J L, Wan J, Jiang Z M, Khitun A and Wang K L 2002 J. Appl. Phys. 92 6804
[14] Ray S K, Das S, Singha R K, Manna S and Dhar A 2011 Nanoscale Res. Lett. 6 224
[15] Singha R K, Das S, Majumdar S, Das K, Dhar A and Ray S K 2008 J. Appl. Phys. 103 114301
[16] Mooney P M, Dacol F H, Tsang J C and Chu J O 1993 Appl. Phys. Lett. 62 2069
[17] Yi J B, Li X P, Ding J and Seet H L 2007 J. Alloys Compd. 428 230
[18] Pavesi L and Ceschini M 1993 Phys. Rev. B 48 17625
[19] Takagahara T and Takeda K 1992 Phys. Rev. B 46 15578
[20] Samavati A R, Ghoshal S K and Othaman Z 2012 Chin. Phys. Lett. 29 048101
Related articles from Frontiers Journals
[1] Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun. High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes[J]. Chin. Phys. Lett., 2022, 39(3): 118101
[2] Xunheng Ye , Jiawei Shen , Xiangming Tao , Gaoxiang Ye , and Bo Yang. Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS[J]. Chin. Phys. Lett., 2021, 38(3): 118101
[3] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 118101
[4] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 118101
[5] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 118101
[6] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 118101
[7] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 118101
[8] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 118101
[9] Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou. Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors[J]. Chin. Phys. Lett., 2018, 35(2): 118101
[10] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 118101
[11] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 118101
[12] Zhu-Liang Wang, Hui Ma, Fang Wang, Min Li, Li-Guo Zhang, Xiao-Hong Xu. Controllable Synthesis and Magnetic Properties of Monodisperse Fe$_{3}$O$_{4}$ Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(10): 118101
[13] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 118101
[14] ZHAO Mei, DONG Li-Feng, LI Cheng-Dong, YU Li-Yan, LI Ping. A Facile Route to Cotton-Like BiOCl Nanomaterial with Enhanced Dye-Sensitized Visible Light Photocatalytic Efficiency[J]. Chin. Phys. Lett., 2015, 32(09): 118101
[15] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 118101
Viewed
Full text


Abstract