CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Transport through a Gate Tunable Graphene Double Quantum Dot |
ZHOU Cheng, TU Tao**, WANG Li, LI Hai-Ou, CAO Gang, GUO Guang-Can, GUO Guo-Ping** |
Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
|
|
Cite this article: |
ZHOU Cheng, TU Tao, WANG Li et al 2012 Chin. Phys. Lett. 29 117303 |
|
|
Abstract We demonstrate how molecular states of coupled graphene quantum dots are probed in transport experiments. The applied method measures the sequential tunneling of electrons through the double dot and hence resolves the molecular state transport channel simultaneously. The overlap of the two dots' wavefunctions, and in turn, the tunnel coupling between the two dots are controlled by the local gates. These results imply the relevance of our graphene device for implementing a quantum manipulation by adjusting the electrodes.
|
|
Received: 26 July 2012
Published: 28 November 2012
|
|
PACS: |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
72.80.Rj
|
(Fullerenes and related materials)
|
|
73.21.La
|
(Quantum dots)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
|
|
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Geim A K 2009 Science 324 1530 [3] Silvestrov P G and Efetov K B 2007 Phys. Rev. Lett. 98 016802 [4] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nat. Phys. 3 192 [5] Guo G P, Lin Z R, Tu T, Li X P and Guo G C 2009 New J. Phys. 11 123005 [6] Pereira J M, Vasilopoulos P and Peeters F M 2007 Nano Lett. 7 946 [7] Martino A D, Dellanna L and Egger R 2007 Phys. Rev. Lett. 98 066802 [8] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 050301 [9] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Su Z, GuoG C, Jiang H W and Guo G P 2010 Appl. Phys. Lett. 97 262113 [10] Wang L J, Guo G P, Wei D, Cao G, Tu T, Xiao M, Guo G C and Chang A M 2011 Appl. Phys. Lett. 99 112117 [11] Wang L J, Li H O, Tu T, Cao G, Zhou C, Hao X J, Su Z, XiaoM, Guo G C, Chang A M and Guo G P 2012 Appl. Phys. Lett. 100 022106 [12] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, andVandersypen L M K 2007 Rev. Mod. Phys. 79 1217 [13] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501 [14] Hatano T, Stopa M and Tarucha S 2005 Science 309 268 [15] van der Wiel W G, de Francheschi S, Elzermann J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1 [16] Cao G, Li H O, Tu T, Zhou C, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 097302 [17] Oosterkamp T H, Fujisawa T, van der Wiel W G, Ishibashi K, Hijman R V, Tarucha S and Kouwenhoven L P 1998 Nature 395 873 [18] Hu Y, Churchill H O H, Reilly D J, Xiang J, Lieber C M, andMarcus C M 2007 Nat. Nanotechnol. 2 622 [19] Golovach V N and Loss D 2004 Phys. Rev. B 69 245327 [20] Graber M R, Coish W A, Hoffmann C, Weiss M, Furer J, Oberholzer S, Loss D and Schonenberger C 2006 Phys. Rev. B 74 075427 [21] Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804 [22] Cao G, Wang L, Tu T, Li H O, Xiao M and Guo G P 2012 Chin. Phys. Lett. 29 030306 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|