Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 117303    DOI: 10.1088/0256-307X/29/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transport through a Gate Tunable Graphene Double Quantum Dot
ZHOU Cheng, TU Tao**, WANG Li, LI Hai-Ou, CAO Gang, GUO Guang-Can, GUO Guo-Ping**
Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
Cite this article:   
ZHOU Cheng, TU Tao, WANG Li et al  2012 Chin. Phys. Lett. 29 117303
Download: PDF(2253KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate how molecular states of coupled graphene quantum dots are probed in transport experiments. The applied method measures the sequential tunneling of electrons through the double dot and hence resolves the molecular state transport channel simultaneously. The overlap of the two dots' wavefunctions, and in turn, the tunnel coupling between the two dots are controlled by the local gates. These results imply the relevance of our graphene device for implementing a quantum manipulation by adjusting the electrodes.
Received: 26 July 2012      Published: 28 November 2012
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  72.80.Rj (Fullerenes and related materials)  
  73.21.La (Quantum dots)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/117303       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/117303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Cheng
TU Tao
WANG Li
LI Hai-Ou
CAO Gang
GUO Guang-Can
GUO Guo-Ping
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Geim A K 2009 Science 324 1530
[3] Silvestrov P G and Efetov K B 2007 Phys. Rev. Lett. 98 016802
[4] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nat. Phys. 3 192
[5] Guo G P, Lin Z R, Tu T, Li X P and Guo G C 2009 New J. Phys. 11 123005
[6] Pereira J M, Vasilopoulos P and Peeters F M 2007 Nano Lett. 7 946
[7] Martino A D, Dellanna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[8] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 050301
[9] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Su Z, GuoG C, Jiang H W and Guo G P 2010 Appl. Phys. Lett. 97 262113
[10] Wang L J, Guo G P, Wei D, Cao G, Tu T, Xiao M, Guo G C and Chang A M 2011 Appl. Phys. Lett. 99 112117
[11] Wang L J, Li H O, Tu T, Cao G, Zhou C, Hao X J, Su Z, XiaoM, Guo G C, Chang A M and Guo G P 2012 Appl. Phys. Lett. 100 022106
[12] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, andVandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[13] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501
[14] Hatano T, Stopa M and Tarucha S 2005 Science 309 268
[15] van der Wiel W G, de Francheschi S, Elzermann J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[16] Cao G, Li H O, Tu T, Zhou C, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 097302
[17] Oosterkamp T H, Fujisawa T, van der Wiel W G, Ishibashi K, Hijman R V, Tarucha S and Kouwenhoven L P 1998 Nature 395 873
[18] Hu Y, Churchill H O H, Reilly D J, Xiang J, Lieber C M, andMarcus C M 2007 Nat. Nanotechnol. 2 622
[19] Golovach V N and Loss D 2004 Phys. Rev. B 69 245327
[20] Graber M R, Coish W A, Hoffmann C, Weiss M, Furer J, Oberholzer S, Loss D and Schonenberger C 2006 Phys. Rev. B 74 075427
[21] Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804
[22] Cao G, Wang L, Tu T, Li H O, Xiao M and Guo G P 2012 Chin. Phys. Lett. 29 030306
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 117303
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 117303
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 117303
[4] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 117303
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 117303
[6] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 117303
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 117303
[8] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 117303
[9] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 117303
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 117303
[11] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 117303
[12] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 117303
[13] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 117303
[14] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 117303
[15] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 117303
Viewed
Full text


Abstract